105 research outputs found

    On the Meaning of the Principle of General Covariance

    Full text link
    We present a definite formulation of the Principle of General Covariance (GCP) as a Principle of General Relativity with physical content and thus susceptible of verification or contradiction. To that end it is useful to introduce a kind of coordinates, that we call quasi-Minkowskian coordinates (QMC), as an empirical extension of the Minkowskian coordinates employed by the inertial observers in flat space-time to general observers in the curved situations in presence of gravitation. The QMC are operationally defined by some of the operational protocols through which the inertial observers determine their Minkowskian coordinates and may be mathematically characterized in a neighbourhood of the world-line of the corresponding observer. It is taken care of the fact that the set of all the operational protocols which are equivalent to measure a quantity in flat space-time split into inequivalent subsets of operational prescriptions under the presence of a gravitational field or when the observer is not inertial. We deal with the Hole Argument by resorting to de idea of the QMC and show how it is the metric field that supplies the physical meaning of coordinates and individuates point-events in regions of space-time where no other fields exist. Because of that the GCP has also value as a guiding principle supporting Einstein's appreciation of its heuristic worth in his reply to Kretschmann in 1918

    Gravitational Energy of Kerr and Kerr Anti-de Sitter Space-times in the Teleparallel Geometry

    Full text link
    In the context of the Hamiltonian formulation of the teleparallel equivalent of general relativity we compute the gravitational energy of Kerr and Kerr Anti-de Sitter (Kerr-AdS) space-times. The present calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. In each case, the energy is exactly computed for finite and arbitrary spacelike two-spheres, without any restriction on the metric parameters. In particular, we evaluate the energy at the outer event horizon of the black holes.Comment: 11 pages, 1 figure, to appear in JHEP11(2003)00

    Geodesics and Geodesic Deviation in static Charged Black Holes

    Full text link
    The radial motion along null geodesics in static charged black hole space-times, in particular, the Reissner-Nordstr\"om and stringy charged black holes are studied. We analyzed the properties of the effective potential. The circular photon orbits in these space-times are investigated. We found that the radius of circular photon orbits in both charged black holes are different and differ from that given in Schwarzschild space-time. We studied the physical effects of the gravitational field between two test particles in stringy charged black hole and compared the results with that given in Schwarzschild and Reissner-Nordstr\"om black holes.Comment: 12 pages, 5 figures, small changes, figures and references added, conclusions changed. A improved, version accepted in Astrophysics and Space Scienc

    Matrix theory of gravitation

    Full text link
    A new classical theory of gravitation within the framework of general relativity is presented. It is based on a matrix formulation of four-dimensional Riemann-spaces and uses no artificial fields or adjustable parameters. The geometrical stress-energy tensor is derived from a matrix-trace Lagrangian, which is not equivalent to the curvature scalar R. To enable a direct comparison with the Einstein-theory a tetrad formalism is utilized, which shows similarities to teleparallel gravitation theories, but uses complex tetrads. Matrix theory might solve a 27-year-old, fundamental problem of those theories (sec. 4.1). For the standard test cases (PPN scheme, Schwarzschild-solution) no differences to the Einstein-theory are found. However, the matrix theory exhibits novel, interesting vacuum solutions.Comment: 24 page

    SO(5) theory of insulating vortex cores in high-TcT_c materials

    Full text link
    We study the fermionic states of the antiferromagnetically ordered vortex cores predicted to exist in the superconducting phase of the newly proposed SO(5) model of strongly correlated electrons. Our model calculation gives a natural explanation of the recent STM measurements on BSCCO, which in surprising contrast to YBCO revealed completely insulating vortex cores.Comment: 4 pages, 1 figur

    Properties of Ly-alpha and Gamma Ray Burst selected starbursts at high redshifts

    Full text link
    Selection of starbursts through either deep narrow band imaging of redshifted Ly-alpha emitters, or localisation of host galaxies of gamma-ray bursts both give access to starburst galaxies that are significantly fainter than what is currently available from selection techniques based on the continuum (such as Lyman-break selection). We here present results from a survey for Ly-alpha emitters at z=3, conducted at the European Southern Observatory's Very Large Telescope. Furthermore, we briefly describe the properties of host galaxies of gamma-ray bursts at z>2. The majority of both Ly-alpha and gamma-ray burst selected starbursts are fainter than the flux limit of the Lyman-break galaxy sample, suggesting that a significant fraction of the integrated star formation at z~3 is located in galaxies at the faint end of the luminosity function.Comment: invited talk, 6 pages, 3 figures, to appear in ``Starbursts from 30 Doradus to Lyman Break Galaxies'', eds. R. de Grijs, R. M. Gonzalez Delgado, Astrophysics & Space Science Library Series, Kluwer (in press

    Consequences of marine barriers for genetic diversity of the coral-specialist yellowbar angelfish from the Northwestern Indian Ocean

    Get PDF
    Ocean circulation, geological history, geographic distance, and seascape heterogeneity play an important role in phylogeography of coral‐dependent fishes. Here, we investigate potential genetic population structure within the yellowbar angelfish (Pomacanthus maculosus) across the Northwestern Indian Ocean (NIO). We then discuss our results with respect to the above abiotic features in order to understand the contemporary distribution of genetic diversity of the species. To do so, restriction site‐associated DNA sequencing (RAD‐seq) was utilized to carry out population genetic analyses on P. maculosus sampled throughout the species’ distributional range. First, genetic data were correlated to geographic and environmental distances, and tested for isolation‐by‐distance and isolation‐by‐environment, respectively, by applying the Mantel test. Secondly, we used distance‐based and model‐based methods for clustering genetic data. Our results suggest the presence of two putative barriers to dispersal; one off the southern coast of the Arabian Peninsula and the other off northern Somalia, which together create three genetic subdivisions of P. maculosus within the NIO. Around the Arabian Peninsula, one genetic cluster was associated with the Red Sea and the adjacent Gulf of Aden in the west, and another cluster was associated with the Arabian Gulf and the Sea of Oman in the east. Individuals sampled in Kenya represented a third genetic cluster. The geographic locations of genetic discontinuities observed between genetic subdivisions coincide with the presence of substantial upwelling systems, as well as habitat discontinuity. Our findings shed light on the origin and maintenance of genetic patterns in a common coral reef fish inhabiting the NIO, and reinforce the hypothesis that the evolution of marine fish species in this region has likely been shaped by multiple vicariance events.This work was conducted within the framework of the NPRP project ‘Connectivity, diversity and genetic between offshore natural coral reefs and oil platforms – NPRP No. 7‐1129‐1‐201’, funded by the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors. F.T. is supported by a CNPq/Brazil fellowship through the program Science without Borders (Proc. 232875/2014‐6). We are also grateful to Filipe Vieira (University of Copenhagen) for his advice on population genetic analyses

    Asymptotic dynamics in 3D gravity with torsion

    Full text link
    We study the nature of boundary dynamics in the teleparallel 3D gravity. The asymptotic field equations with anti-de Sitter boundary conditions yield only two non-trivial boundary modes, related to a conformal field theory with classical central charge. After showing that the teleparallel gravity can be formulated as a Chern-Simons theory, we identify dynamical structure at the boundary as the Liouville theory.Comment: 16 pages, RevTeX, no figure

    A Derivation of Three-Dimensional Inertial Transformations

    Get PDF
    The derivation of the transformations between inertial frames made by Mansouri and Sexl is generalised to three dimensions for an arbitrary direction of the velocity. Assuming lenght contraction and time dilation to have their relativistic values, a set of transformations kinematically equivalent to special relativity is obtained. The ``clock hypothesis'' allows the derivation to be extended to accelerated systems. A theory of inertial transformations maintaining an absolute simultaneity is shown to be the only one logically consistent with accelerated movements. Algebraic properties of these transformations are discussed. Keywords: special relativity, synchronization, one-way velocity of light, ether, clock hypothesis.Comment: 16 pages (A5), Latex, one figure, to be published in Found. Phys. Lett. (1997

    Energy Distribution in f(R) Gravity

    Full text link
    The well-known energy problem is discussed in f(R) theory of gravity. We use the generalized Landau-Lifshitz energy-momentum complex in the framework of metric f(R) gravity to evaluate the energy density of plane symmetric solutions for some general f(R) models. In particular, this quantity is found for some popular choices of f(R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.Comment: 15 pages, accepted for publication in Gen. Relativ. & Gra
    • …
    corecore