2 research outputs found

    Applications and efficiencies of the first cat 63K DNA array

    Get PDF
    The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array\u2019s genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50\u20131,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations

    Data from: Towards a genome-wide approach for detecting hybrids: informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris)

    No full text
    Endemic gene pools have been severely endangered by human-mediated hybridization, which is posing new challenges in the conservation of several vertebrate species. The endangered European wildcat is an example of this problem, as several natural populations are suffering introgression of genes from the domestic cat. The implementation of molecular methods for detecting hybridization is crucial for supporting appropriate conservation programs on the wildcat. In this study, genetic variation at 158 single-nucleotide polymorphisms (SNPs) was analyzed in 139 domestic cats, 130 putative European wildcats and 5 captive-bred hybrids (N=274). These SNPs were variable both in wild (HE=0.107) and domestic cats (HE=0.340). Although we did not find any SNP that was private in any population, 22 SNPs were monomorphic in wildcats and pairwise FCT values revealed marked differences between domestic and wildcats, with the most divergent 35 loci providing an average FCT>0.74. The power of all the loci to accurately identify admixture events and discriminate the different hybrid categories was evaluated. Results from simulated and real genotypes show that the 158 SNPs provide successful estimates of admixture, with 100% hybrid individuals (two to three generations in the past) being correctly identified in STRUCTURE and over 92% using the NEWHYBRIDS' algorithm. None of the unclassified cats were wrongly allocated to another hybrid class. Thirty-five SNPs, showing the highest FCT values, provided the most parsimonious panel for robust inferences of parental and first generations of admixed ancestries. This approach may be used to further reconstruct the evolution of wildcat populations and, hopefully, to develop sound conservation guidelines for its legal protection in Europe
    corecore