23 research outputs found

    Mg/Ca ratios in freshwater microbial carbonates: Thermodynamic, kinetic and vital effects

    Get PDF
    The ratio of magnesium to calcium (Mg/Ca) in carbonate minerals in an abiotic setting is conventionally assumed to be predominantly controlled by (Mg/Ca)solution and a temperature dependant partition coefficient. This temperature dependence suggests that both marine (e.g. foraminiferal calcite and corals) and freshwater (e.g. speleothems and surface freshwater deposits, “tufas”) carbonate deposits may be important archives of palaeotemperature data. However, there is considerable uncertainty in all these settings. In surface freshwater deposits this uncertainty is focussed on the influence of microbial biofilms. Biogenic or “vital” effects may arise from microbial metabolic activity and/or the presence of extracellular polymeric substances (EPS). This study addresses this key question for the first time, via a series of unique through-flow microcosm and agitated flask experiments where freshwater calcite was precipitated under controlled conditions. These experiments reveal there is no strong relationship between (Mg/Ca)calcite and temperature, so the assumption of thermodynamic fractionation is not viable. However, there is a pronounced influence on (Mg/Ca)calcite from precipitation rate, so that rapidly forming precipitates develop with very low magnesium content indicating kinetic control on fractionation. Calcite precipitation rate in these experiments (where the solution is only moderately supersaturated) is controlled by biofilm growth rate, but occurs even when light is excluded indicating that photosynthetic influences are not critical. Our results thus suggest the apparent kinetic fractionation arises from the electrochemical activity of EPS molecules, and are therefore likely to occur wherever these molecules occur, including stromatolites, soil and lake carbonates and (via colloidal EPS) speleothems

    Analytical challenges and the development of biomarkers to measure and to monitor the effects of ocean acidification

    No full text
    Changing ocean-carbonate chemistry caused by oceanic uptake of anthropogenic atmospheric carbon dioxide leads to the formation of carbonic acid, thus lowering the pH of the sea with predictions of a decrease from current levels at 8.15 to 7.82 by the end of the century. The exact measurement of subtle pH changes in seawater over time presents significant analytical challenges, as the equilibrium constants are governed by water temperature and pressure, salinity effects, and the existence of other ionic species in seawater.Here, we review these challenges and how pH also affects dissolved inorganic and organic chemicals that affect biological systems. This includes toxic compounds (xenobiotics) as well as chemicals that are beneficial for marine organisms, such as the chemical signals (i.e. pheromones) that are utilized to coordinate animal behavior. We review how combining analytical, molecular and biochemical tools can lead to the development of biosensors to detect pH effects to enable predictive modeling of the ecological consequences of ocean acidification
    corecore