592 research outputs found

    Coherent photon bremsstrahlung and dynamics of heavy-ion collisions: comparison of different models

    Get PDF
    Differential spectra of coherent photon bremsstrahlung in relativistic heavy ion collisions are calculated within various schematic models of the projectile-target stopping. Two versions of the degradation length model, based on a phenomenological deceleration law, are considered. The simple shock wave model is studied analytically. The predictions of these models agree in the soft photon limit, where the spectrum is determined only by the final velocity distribution of charged particles. The results of these models in the case of central Au+Au collisions at various bombarding energies are compared with the predictions of the microscopic transport model UrQMD. It is shown that at the AGS energy the coherent photon bremsstrahlung exceeds the photon yield from π0\pi^0-decays at photon energies \omega\loo 50 MeV.Comment: 23 pages RevTeX, 9 eps Figure

    Hyperelliptic Theta-Functions and Spectral Methods: KdV and KP solutions

    Full text link
    This is the second in a series of papers on the numerical treatment of hyperelliptic theta-functions with spectral methods. A code for the numerical evaluation of solutions to the Ernst equation on hyperelliptic surfaces of genus 2 is extended to arbitrary genus and general position of the branch points. The use of spectral approximations allows for an efficient calculation of all characteristic quantities of the Riemann surface with high precision even in almost degenerate situations as in the solitonic limit where the branch points coincide pairwise. As an example we consider hyperelliptic solutions to the Kadomtsev-Petviashvili and the Korteweg-de Vries equation. Tests of the numerics using identities for periods on the Riemann surface and the differential equations are performed. It is shown that an accuracy of the order of machine precision can be achieved.Comment: 16 pages, 8 figure

    The trade off between diversity and quality for multi-objective workforce scheduling

    Get PDF
    In this paper we investigate and compare multi-objective and weighted single objective approaches to a real world workforce scheduling problem. For this difficult problem we consider the trade off in solution quality versus population diversity, for different sets of fixed objective weights. Our real-world workforce scheduling problem consists of assigning resources with the appropriate skills to geographically dispersed task locations while satisfying time window constraints. The problem is NP-Hard and contains the Resource Constrained Project Scheduling Problem (RCPSP) as a sub problem. We investigate a genetic algorithm and serial schedule generation scheme together with various multi-objective approaches. We show that multi-objective genetic algorithms can create solutions whose fitness is within 2% of genetic algorithms using weighted sum objectives even though the multi-objective approaches know nothing of the weights. The result is highly significant for complex real-world problems where objective weights are seldom known in advance since it suggests that a multi-objective approach can generate a solution close to the user preferred one without having knowledge of user preferences

    Pair creation of anti-de Sitter black holes on a cosmic string background

    Full text link
    We analyze the quantum process in which a cosmic string breaks in an anti-de Sitter (AdS) background, and a pair of charged or neutral black holes is produced at the ends of the strings. The energy to materialize and accelerate the pair comes from the strings tension. In an AdS background this is the only study done in the process of production of a pair of correlated black holes with spherical topology. The acceleration AA of the produced black holes is necessarily greater than (|L|/3)^(1/2), where L<0 is the cosmological constant. Only in this case the virtual pair of black holes can overcome the attractive background AdS potential well and become real. The instantons that describe this process are constructed through the analytical continuation of the AdS C-metric. Then, we explicitly compute the pair creation rate of the process, and we verify that (as occurs with pair creation in other backgrounds) the pair production of nonextreme black holes is enhanced relative to the pair creation of extreme black holes by a factor of exp(Area/4), where Area is the black hole horizon area. We also conclude that the general behavior of the pair creation rate with the mass and acceleration of the black holes is similar in the AdS, flat and de Sitter cases, and our AdS results reduce to the ones of the flat case when L=0.Comment: 13 pages, 3 figures, ReVTeX

    Composite vertices that lead to soft form factors

    Get PDF
    The momentum-space cut-off parameter Λ\Lambda of hadronic vertex functions is studied in this paper. We use a composite model where we can measure the contributions of intermediate particle propagations to Λ\Lambda. We show that in many cases a composite vertex function has a much smaller cut-off than its constituent vertices, particularly when light constituents such as pions are present in the intermediate state. This suggests that composite meson-baryon-baryon vertex functions are rather soft, i.e., they have \Lambda considerably less than 1 GeV. We discuss the origin of this softening of form factors as well as the implications of our findings on the modeling of nuclear reactions.Comment: REVTex, 19 pages, 5 figs(to be provided on request

    Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model

    Get PDF
    We develop and extend the dynamical string parton model. This model, which is based on the salient features of QCD, uses classical Nambu-Got\=o strings with the endpoints identified as partons, an invariant string breaking model of the hadronization process, and interactions described as quark-quark interactions. In this work, the original model is extended to include a phenomenological quantization of the mass of the strings, an analytical technique for treating the incident nucleons as a distribution of string configurations determined by the experimentally measured structure function, the inclusion of the gluonic content of the nucleon through the introduction of purely gluonic strings, and the use of a hard parton-parton interaction taken from perturbative QCD combined with a phenomenological soft interaction. The limited number of parameters in the model are adjusted to e+ee^+e^- and pp --pp data. Utilizing these parameters, the first calculations of the model for pp --AA and AA--AA collisions are presented and found to be in reasonable agreement with a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex

    A multistate model of health transitions in older people: a secondary analysis of ASPREE clinical trial data

    Get PDF
    Background: Understanding the nature of transitions from a healthy state to chronic diseases and death is important for planning health-care system requirements and interventions. We aimed to quantify the trajectories of disease and disability in a population of healthy older people. Methods: We conducted a secondary analysis of data from the ASPREE trial, which was done in 50 sites in Australia and the USA and recruited community-dwelling, healthy individuals who were aged 70 years or older (≥65 years for Black and Hispanic people in the USA) between March 10, 2010, and Dec 24, 2014. Participants were followed up with annual face-to-face visits, biennial assessments of cognitive function, and biannual visits for physical function until death or June 12, 2017, whichever occurred first. We used multistate models to examine transitions from a healthy state to first intermediate disease events (ie, cancer events, stroke events, cardiac events, and physical disability or dementia) and, ultimately, to death. We also examined the effects of age and sex on transition rates using Cox proportional hazards regression models. Findings: 19 114 participants with a median age of 74·0 years (IQR 71·6–77·7) were included in our analyses. During a median follow-up of 4·7 years (IQR 3·6–5·7), 1933 (10·1%) of 19 114 participants had an incident cancer event, 487 (2·5%) had an incident cardiac event, 398 (2·1%) had an incident stroke event, 924 (4·8%) developed persistent physical disability or dementia, and 1052 (5·5%) died. 15 398 (80·6%) individuals did not have any of these events during follow-up. The highest proportion of deaths followed incident cancer (501 [47·6%] of 1052) and 129 (12·3%) participants transitioned from disability or dementia to death. Among 12 postulated transitions, transitions from the intermediate states to death had much higher rates than transitions from a healthy state to death. The progression rates to death were 158 events per 1000 person-years (95% CI 144–172) from cancer, 112 events per 1000 person-years (86–145) from stroke, 88 events per 1000 person-years (68–111) from cardiac disease, 69 events per 1000 person-years (58–82) from disability or dementia, and four events per 1000 person-years (4–5) from a healthy state. Age was significantly associated with an accelerated rate for most transitions. Male sex (vs female sex) was significantly associated with an accelerate rate for five of 12 transitions. Interpretation: We describe a multistate model in a healthy older population in whom the most common transition was from a healthy state to cancer. Our findings provide unique insights into the frequency of events, their transition rates, and the impact of age and sex. These results have implications for preventive health interventions and planning for appropriate levels of residential care in healthy ageing populations. Funding: The National Institutes of Health

    Isospin-Violating Meson-Nucleon Vertices as an Alternate Mechanism of Charge-Symmetry Breaking

    Get PDF
    We compute isospin-violating meson-nucleon coupling constants and their consequent charge-symmetry-breaking nucleon-nucleon potentials. The couplings result from evaluating matrix elements of quark currents between nucleon states in a nonrelativistic constituent quark model; the isospin violations arise from the difference in the up and down constituent quark masses. We find, in particular, that isospin violation in the omega-meson--nucleon vertex dominates the class IV CSB potential obtained from these considerations. We evaluate the resulting spin-singlet--triplet mixing angles, the quantities germane to the difference of neutron and proton analyzing powers measured in elastic np\vec{n}-\vec{p} scattering, and find them commensurate to those computed originally using the on-shell value of the ρ\rho-ω\omega mixing amplitude. The use of the on-shell ρ\rho-ω\omega mixing amplitude at q2=0q^2=0 has been called into question; rather, the amplitude is zero in a wide class of models. Our model possesses no contribution from ρ\rho-ω\omega mixing at q2=0q^2=0, and we find that omega-meson exchange suffices to explain the measured npn-p analyzing power difference~at~183 MeV.Comment: 20 pages, revtex, 3 uuencoded PostScript figure

    Multimodal imaging of hair follicle bulge-derived stem cells in a mouse model of traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) is a devastating event for which current therapies are limited. Stem cell transplantation may lead to recovery of function via different mechanisms, such as cell replacement through differentiation, stimulation of angiogenesis and support to the microenvironment. Adult hair follicle bulge-derived stem cells (HFBSCs) possess neuronal differentiation capacity, are easy to harvest and are relatively immune-privileged, which makes them potential candidates for autologous stem cell-based therapy. In this study, we apply in vivo multimodal, optical and magnetic resonance imaging techniques to investigate the behavior of mouse HFBSCs in a mouse model of TBI. HFBSCs expressed Luc2 and copGFP and were examined for their differentiation capacity in vitro. Subsequently, transduced HFBSCs, preloaded with ferumoxytol, were transplanted next to the TBI lesion (cortical region) in nude mice, 2 days after injury. Brains were fixed for immunohistochemistry 58 days after transplantation. Luc2- and copGFP-expressing, ferumoxytol-loaded HFBSCs showed adequate neuronal differentiation potential in vitro. Bioluminescence of the lesioned brain revealed survival of HFBSCs and magnetic resonance imaging identified their localization in the area of transplantation. Immunohistochemistry showed that transplanted cells stained for nestin and neurofilament protein (NF-Pan). Cells also expressed laminin and fibronectin but extracellular matrix masses were not detected. After 58 days, ferumoxytol could be detected in HFBSCs in brain tissue sections. These results show that HFBSCs are able to survive after brain transplantation and suggest that ce
    corecore