480 research outputs found

    Proton Ground-state Correlations in the Even Calcium-isotopes

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Effects of domain walls on hole motion in the two-dimensional t-J model at finite temperature

    Full text link
    The t-J model on the square lattice, close to the t-J_z limit, is studied by quantum Monte Carlo techniques at finite temperature and in the underdoped regime. A variant of the Hoshen-Koppelman algorithm was implemented to identify the antiferromagnetic domains on each Trotter slice. The results show that the model presents at high enough temperature finite antiferromagnetic (AF) domains which collapse at lower temperatures into a single ordered AF state. While there are domains, holes would tend to preferentially move along the domain walls. In this case, there are indications of hole pairing starting at a relatively high temperature. At lower temperatures, when the whole system becomes essentially fully AF ordered, at least in finite clusters, holes would likely tend to move within phase separated regions. The crossover between both states moves down in temperature as doping increases and/or as the off-diagonal exchange increases. The possibility of hole motion along AF domain walls at zero temperature in the fully isotropic t-J is discussed.Comment: final version, to appear in Physical Review

    Association of FCGR3A and FCGR3B haplotypes with rheumatoid arthritis and primary Sjögren's syndrome [POSTER PRESENTATION]

    Get PDF
    Background Rheumatoid arthritis (RA) is an autoimmune disease that is thought to arise from a complex interaction between multiple genetic factors and environmental triggers. We have previously demonstrated an association between a Fc gamma receptor (FcγR) haplotype and RA in a cross-sectional cohort of RA patients. We have sought to confirm this association in an inception cohort of RA patients and matched controls. We also extended our study to investigate a second autoanti-body associated rheumatic disease, primary Sjögren's syndrome (PSS). Methods The FCGR3A-158F/V and FCGR3B-NA1/NA2 functional polymorphisms were examined for association in an inception cohort of RA patients (n = 448), and a well-characterised PSS cohort (n = 83) from the United Kingdom. Pairwise disequilibrium coefficients (D') were calculated in 267 Blood Service healthy controls. The EHPlus program was used to estimate haplotype frequencies for patients and controls and to determine whether significant linkage disequilibrium was present. A likelihood ratio test is performed to test for differences between the haplotype frequencies in cases and controls. A permutation procedure implemented in this program enabled 1000 permutations to be performed on all haplotype associations to assess significance. Results There was significant linkage disequilibrium between FCGR3A and FCGR3B (D' = -0.445, P = 0.001). There was no significant difference in the FCGR3A or FCGR3B allele or genotype frequencies in the RA or PSS patients compared with controls. However, there was a significant difference in the FCGR3A-FCGR3B haplotype distributions with increased homozygosity for the FCGR3A-FCGR3B 158V-NA2 haplotype in both our inception RA cohort (odds ratio = 2.15, 95% confidence interval = 1.1–4.2 P = 0.027) and PSS (odds ratio = 2.83, 95% confidence interval = 1.0–8.2, P = 0.047) compared with controls. The reference group for these analyses comprised individuals who did not possess a copy of the FCGR3A-FCGR3B 158V-NA2 haplotype. Conclusions We have confirmed our original findings of association between the FCGR3A-FCGR3B 158V-NA2 haplotype and RA in a new inception cohort of RA patients. This suggests that there may be an RA-susceptibility gene at this locus. The significant increased frequency of an identical haplotype in PSS suggests the FcγR genetic locus may contribute to the pathogenesis of diverse autoantibody-mediated rheumatic diseases

    Concerning Order and Disorder in the Ensemble of Cu-O Chain Fragments in Oxygen Deficient Planes of Y-Ba-Cu-O

    Full text link
    In connection with numerous X-ray and neutron investigations of some high temperature superconductors (YBa2_2Cu3_3O6+x_{6+x} and related compounds) a non-trivial part of the structure factor, coming from partly disordered Cu-O-\dots-O-Cu chain fragments, situated within basal planes, CuOx_x, can be a subject of theoretical interest. Closely connected to such a diffusive part of the structure factor are the correlation lengths, which are also available in neutron and X-ray diffraction studies and depend on a degree of oxygen disorder in a basal plane. The quantitative measure of such a disorder can be associated with temperature of a sample anneal, TqT_q, at which oxygen in a basal plane remains frozen-in high temperature equilibrium after a fast quench of a sample to room or lower temperature. The structure factor evolution with xx is vizualized in figures after the numerical calculations. The theoretical approach employed in the paper has been developed for the orthorhombic state of YBCO.Comment: Revtex, 27 pages, 14 PostScript figures upon request, ITP/GU/94/0

    Mesoscopic phase separation in La2CuO4.02 - a 139La NQR study

    Full text link
    In crystals of La2CuO4.02 oxygen diffusion can be limited to such small length scales, that the resulting phase separation is invisible for neutrons. Decomposition of the 139La NQR spectra shows the existence of three different regions, of which one orders antiferromagnetically below 17K concomitantly with the onset of a weak superconductivity in the crystal. These regions are compared to the macroscopic phases seen previously in the title compound and the cluster-glass and striped phases reported for the underdoped Sr-doped cuprates.Comment: 4 pages, RevTeX, 5 figures, to be published in PR

    Topological doping and the stability of stripe phases

    Full text link
    We analyze the properties of a general Ginzburg-Landau free energy with competing order parameters, long-range interactions, and global constraints (e.g., a fixed value of a total ``charge'') to address the physics of stripe phases in underdoped high-Tc and related materials. For a local free energy limited to quadratic terms of the gradient expansion, only uniform or phase-separated configurations are thermodynamically stable. ``Stripe'' or other non-uniform phases can be stabilized by long-range forces, but can only have non-topological (in-phase) domain walls where the components of the antiferromagnetic order parameter never change sign, and the periods of charge and spin density waves coincide. The antiphase domain walls observed experimentally require physics on an intermediate lengthscale, and they are absent from a model that involves only long-distance physics. Dense stripe phases can be stable even in the absence of long-range forces, but domain walls always attract at large distances, i.e., there is a ubiquitous tendency to phase separation at small doping. The implications for the phase diagram of underdoped cuprates are discussed.Comment: 18 two-column pages, 2 figures, revtex+eps

    Spatially homogeneous ground state of the two-dimensional Hubbard model

    Full text link
    We investigate the stability with respect to phase separation or charge density-wave formation of the two-dimensional Hubbard model for various values of the local Coulomb repulsion and electron densities using Green-function Monte Carlo techniques. The well known sign problem is particularly serious in the relevant region of small hole doping. We show that the difference in accuracy for different doping makes it very difficult to probe the phase separation instability using only energy calculations, even in the weak-coupling limit (U=4tU=4t) where reliable results are available. By contrast, the knowledge of the charge correlation functions allows us to provide clear evidence of a spatially homogeneous ground state up to U=10tU=10t.Comment: 7 pages and 5 figures. Phys. Rev. B, to appear 200

    Models for Enhanced Absorption in Inhomogeneous Superconductors

    Full text link
    We discuss the low-frequency absorption arising from quenched inhomogeneity in the superfluid density rho_s of a model superconductor. Such inhomogeneities may arise in a high-T_c superconductor from a wide variety of sources, including quenched random disorder and static charge density waves such as stripes. Using standard classical methods for treating randomly inhomogeneous media, we show that both mechanisms produce additional absorption at finite frequencies. For a two-fluid model with weak mean-square fluctuations <(d rho_s)^2 > in rho_s and a frequency-independent quasiparticle conductivity, the extra absorption has oscillator strength proportional to the quantity <(d rho_s)^2>/rho_s, as observed in some experiments. Similar behavior is found in a two-fluid model with anticorrelated fluctuations in the superfluid and normal fluid densities. The extra absorption typically occurs as a Lorentzian centered at zero frequency. We present simple model calculations for this extra absorption under conditions of both weak and strong fluctuations. The relation between our results and other model calculations is briefly discussed

    Interleukin-7 deficiency in rheumatoid arthritis: consequences for therapy-induced lymphopenia

    Get PDF
    We previously demonstrated prolonged, profound CD4+ T-lymphopenia in rheumatoid arthritis (RA) patients following lymphocyte-depleting therapy. Poor reconstitution could result either from reduced de novo T-cell production through the thymus or from poor peripheral expansion of residual T-cells. Interleukin-7 (IL-7) is known to stimulate the thymus to produce new T-cells and to allow circulating mature T-cells to expand, thereby playing a critical role in T-cell homeostasis. In the present study we demonstrated reduced levels of circulating IL-7 in a cross-section of RA patients. IL-7 production by bone marrow stromal cell cultures was also compromised in RA. To investigate whether such an IL-7 deficiency could account for the prolonged lymphopenia observed in RA following therapeutic lymphodepletion, we compared RA patients and patients with solid cancers treated with high-dose chemotherapy and autologous progenitor cell rescue. Chemotherapy rendered all patients similarly lymphopenic, but this was sustained in RA patients at 12 months, as compared with the reconstitution that occurred in cancer patients by 3–4 months. Both cohorts produced naïve T-cells containing T-cell receptor excision circles. The main distinguishing feature between the groups was a failure to expand peripheral T-cells in RA, particularly memory cells during the first 3 months after treatment. Most importantly, there was no increase in serum IL-7 levels in RA, as compared with a fourfold rise in non-RA control individuals at the time of lymphopenia. Our data therefore suggest that RA patients are relatively IL-7 deficient and that this deficiency is likely to be an important contributing factor to poor early T-cell reconstitution in RA following therapeutic lymphodepletion. Furthermore, in RA patients with stable, well controlled disease, IL-7 levels were positively correlated with the T-cell receptor excision circle content of CD4+ T-cells, demonstrating a direct effect of IL-7 on thymic activity in this cohort

    Phase separation in t-J ladders

    Full text link
    The phase separation boundary of isotropic t-J ladders is analyzed using density matrix renormalization group techniques. The complete boundary to phase separation as a function of J/t and doping is determined for a chain and for ladders with two, three and four legs. Six-chain ladders have been analyzed at low hole doping. We use a direct approach in which the phase separation boundary is determined by measuring the hole density in the part of the system which contains both electrons and holes. In addition we examine the binding energy of multi-hole clusters. An extrapolation in the number of legs suggests that the lowest J/t for phase separation to occur in the two dimensional t-J model is J/t~1.Comment: 8 pages in revtex format including 13 embedded figures, one reference adde
    corecore