23 research outputs found

    Creating Ioffe-Pritchard micro-traps from permanent magnetic film with in-plane magnetization

    Full text link
    We present designs for Ioffe-Pritchard type magnetic traps using planar patterns of hard magnetic material. Two samples with different pattern designs were produced by spark erosion of 40 ÎĽ\mum thick FePt foil. The pattern on the first sample yields calculated axial and radial trap frequencies of 51 Hz and 6.8 kHz, respectively. For the second sample the calculated frequencies are 34 Hz and 11 kHz. The structures were used successfully as a magneto-optical trap for 87^{87}Rb and loaded as a magnetic trap. A third design, based on lithographically patterned 250 nm thick FePt film on a Si substrate, yields an array of 19 traps with calculated axial and radial trap frequencies of 1.5 kHz and 110 kHz, respectively.Comment: 8 pages, 5 figures Revised and accepted for EPJD, improved picture

    Atomic physics and non-equilibrium plasmas

    No full text
    Three lectures comprise the report. The lecture, Atomic Structure, is primarily theoretical and covers four topics: (1) Non-relativistic one-electron atom, (2) Relativistic one-electron atom, (3) Non-relativistic many-electron atom, and (4) Relativistic many-electron atom. The lecture, Radiative and Collisional Transitions, considers the problem of transitions between atomic states caused by interactions with radiation or other particles. The lecture, Ionization Balance: Spectral Line Shapes, discusses collisional and radiative transitions when ionization and recombination processes are included. 24 figs., 11 tabs

    Atomic phenomena in dense plasmas

    Get PDF
    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination. (MOW

    Comparison of various NLTE codes in computing the charge-state populations of an argon plasma

    No full text
    A comparison among nine computer codes shows surprisingly large differences where it had been believed that the theroy was well understood. Each code treats an argon plasma, optically thin and with no external photon flux; temperatures vary around 1 keV and ion densities vary from 6 x 10/sup 17/ cm/sup -3/ to 6 x 10/sup 21/ cm/sup -3/. At these conditions most ions have three or fewer bound electrons. The calculated populations of 0-, 1-, 2-, and 3-electron ions differ from code to code by typical factors of 2, in some cases by factors greater than 300. These differences depend as sensitively on how may Rydberg states a code allows as they do on variations among computed collision rates. 29 refs., 23 figs

    Radiative electron capture in nonequilibrium plasmas

    No full text
    Formulae have been obtained for the degree of linear polarization of recombination radiation from a homogeneous plasma having an anisotropic electron velocity distribution, f(v vector), characterized by an axis of symmetry. Polarization measurements are described which utilize these formulae to determine aspects of the anisotropy such as the symmetry axis direction and the lowest order even angular moments of f(v vector). As a special case, if the plasma conforms to a distribution such as a bi-Maxwellian with drift, one can determine the quantities u/sub D//T/sub parallel to/ and (1/T/sub parallel to/ - 1/T/sub perpendicular to/) which involve the electron drift speed, and the perpendicular and parallel electron temperatures. Also, the radiative recombination rate has been calculated for ions whose speeds are comparable to or greater than the electron thermal speed. The change in the rate is small for thermonuclear products in fusion plasmas, but large for cosmic rays in interstellar plasma

    Stark broadening of isolated lines from high-Z emitters in dense plasmas

    No full text
    The joint distribution of the electric microfield and its longitudinal derivative is required for the calculation of line profiles for the He-like ions in very dense plasmas. We used a molecular dynamics code to compute exact distributions in single- and multi-component plasmas, and then we investigated various analytical approximations to these results. We found that a simplified, two-nearest-neighbor scheme leads to surprisingly accurate distribution functions. Our results are illustrated by sample profiles for Ne/sup +8/ and Ar/sup +16/ resonance lines

    Atomic excitation in strongly coupled plasmas

    No full text
    In dense plasmas atomic excitation rates arising from scattering between atoms and surrounding plasma particles are formulated on the basis of the equations of motion for density matrices in a stochastic potential. This model enables us to treat strong transitions for which the first-order perturbation theory does not apply. Within a decorrelation approximation, which enables one to break up the higher-order correlation functions of plasma density fluctuations into the products of binary correlation functions (i.e., dynamic structure factors), the interaction is effectively summed to infinite order. This method is applied to two-level atoms in hydrogen plasmas. It is thereby demonstrated that when the plasma density is sufficiently high, low-frequency ion-density fluctuations may cause coherent atomic excitation between close lying states. Such coherent excitation cannot be described by the conventional collisional rate equations based on the first-order perturbation theory
    corecore