864 research outputs found

    Nonlinear Spinor Fields and its role in Cosmology

    Full text link
    Different characteristic of matter influencing the evolution of the Universe has been simulated by means of a nonlinear spinor field. Exploiting the spinor description of perfect fluid and dark energy evolution of the Universe given by an anisotropic Bianchi type-VI, VI0_0, V, III, I or isotropic Friedmann-Robertson-Walker (FRW) one has been studied. It is shown that due to some restrictions on metric functions, initial anisotropy in the models Bianchi type-VI, VI0_0, V and III does not die away, while the anisotropic Bianchi type-I models evolves into the isotropic one.Comment: 22 pages, 12 Figure

    Anisotropic cosmological models with a perfect fluid and a Λ\Lambda term

    Full text link
    We consider a self-consistent system of Bianchi type-I (BI) gravitational field and a binary mixture of perfect fluid and dark energy given by a cosmological constant. The perfect fluid is chosen to be the one obeying either the usual equation of state, i.e., p = \zeta \ve, with ζ[0,1]\zeta \in [0, 1] or a van der Waals equation of state. Role of the Λ\Lambda term in the evolution of the BI Universe has been studied.Comment: 8 pages, 8 Figure

    Modified Chaplygin Gas and Solvable F-essence Cosmologies

    Full text link
    The Modified Chaplygin Gas (MCG) model belongs to the class of a unified models of dark energy and dark matter. In this paper, we have modeled MCG in the framework of f-essence cosmology. By constructing an equation connecting the MCG and the f-essence, we solve it to obtain explicitly the pressure and energy density of MCG. As special cases, we obtain both positive and negative pressure solutions for suitable choices of free parameters. We also calculate the state parameter which describes the phantom crossing.Comment: 12 pages, (Invited Review), accepted for publication in "Astrophysics and Space Science" DOI: 10.1007/s10509-011-0870-

    Ultra Long Period Cepheids: a primary standard candle out to the Hubble flow

    Full text link
    The cosmological distance ladder crucially depends on classical Cepheids (with P=3-80 days), which are primary distance indicators up to 33 Mpc. Within this volume, very few SNe Ia have been calibrated through classical Cepheids, with uncertainty related to the non-linearity and the metallicity dependence of their period-luminosity (PL) relation. Although a general consensus on these effects is still not achieved, classical Cepheids remain the most used primary distance indicators. A possible extension of these standard candles to further distances would be important. In this context, a very promising new tool is represented by the ultra-long period (ULP) Cepheids (P \geq 80 days), recently identified in star-forming galaxies. Only a small number of ULP Cepheids have been discovered so far. Here we present and analyse the properties of an updated sample of 37 ULP Cepheids observed in galaxies within a very large metallicity range of 12+log(O/H) from ~7.2 to 9.2 dex. We find that their location in the colour(V-I)-magnitude diagram as well as their Wesenheit (V-I) index-period (WP) relation suggests that they are the counterparts at high luminosity of the shorter-period (P \leq 80 days) classical Cepheids. However, a complete pulsation and evolutionary theoretical scenario is needed to properly interpret the true nature of these objects. We do not confirm the flattening in the studied WP relation suggested by Bird et al. (2009). Using the whole sample, we find that ULP Cepheids lie around a relation similar to that of the LMC, although with a large spread (~0.4 mag).Comment: 8 pages, 4 figures, accepted for publication in Astrophysics & Space Scienc

    Immobilisation of chromium in magnesium carbonate minerals

    Get PDF
    Hexavalent chromium (Cr6+) is a toxic carcinogenic pollutant that might be released by the mining and processing of ultramafic rocks and nickel laterites and which requires permanent removal from the contaminated biosphere. Ultramafic material can also serve as a feedstock for the sequestration of CO2 resulting from the growth of new minerals, raising the intriguing proposition of integrated sequestration of both pollutants, CO2 and chromium, into magnesium carbonates. Such a synergistic process downstream of ore recovery and mineral processing could be an elegant proposition for more sustainable utilisation and management of the Earth's resources. We have therefore carried out an experimental and microanalytical study to investigate potentially suitable carbonate minerals. Uptake of chromium in carbonate phases was determined, followed by identification of the crystalline phases and characterisation of the local structural environment around the incorporated chromium centres. The results suggest that neither nesquehonite nor hydromagnesite have the structural capacity to incorporate Cr6+ or Cr3+ significantly at room temperature. We therefore propose that further research into this technology should focus on laboratory assessments of other phases, such as layered double hyroxides, that have a natural structural capacity to uptake both chromium and CO2

    A Model for the Stray Light Contamination of the UVCS Instrument on SOHO

    Full text link
    We present a detailed model of stray-light suppression in the spectrometer channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. The control of diffracted and scattered stray light from the bright solar disk is one of the most important tasks of a coronagraph. We compute the fractions of light that diffract past the UVCS external occulter and non-specularly pass into the spectrometer slit. The diffracted component of the stray light depends on the finite aperture of the primary mirror and on its figure. The amount of non-specular scattering depends mainly on the micro-roughness of the mirror. For reasonable choices of these quantities, the modeled stray-light fraction agrees well with measurements of stray light made both in the laboratory and during the UVCS mission. The models were constructed for the bright H I Lyman alpha emission line, but they are applicable to other spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres

    The Planetary Nebula Luminosity Function at the Dawn of Gaia

    Full text link
    The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent extragalactic standard candle. In theory, the PNLF method should not work at all, since the luminosities of the brightest planetary nebulae (PNe) should be highly sensitive to the age of their host stellar population. Yet the method appears robust, as it consistently produces < 10% distances to galaxies of all Hubble types, from the earliest ellipticals to the latest-type spirals and irregulars. It is therefore uniquely suited for cross-checking the results of other techniques and finding small offsets between the Population I and Population II distance ladders. We review the calibration of the method and show that the zero points provided by Cepheids and the Tip of the Red Giant Branch are in excellent agreement. We then compare the results of the PNLF with those from Surface Brightness Fluctuation measurements, and show that, although both techniques agree in a relative sense, the latter method yields distances that are ~15% larger than those from the PNLF. We trace this discrepancy back to the calibration galaxies and argue that, due to a small systematic error associated with internal reddening, the true distance scale likely falls between the extremes of the two methods. We also demonstrate how PNLF measurements in the early-type galaxies that have hosted Type Ia supernovae can help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally, we discuss how the results from space missions such as Kepler and Gaia can help our understanding of the PNLF phenomenon and improve our knowledge of the physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", to appear in Astrophysics and Space Scienc

    About Bianchi I with VSL

    Full text link
    In this paper we study how to attack, through different techniques, a perfect fluid Bianchi I model with variable G,c and Lambda, but taking into account the effects of a cc-variable into the curvature tensor. We study the model under the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a particular symmetry, self-similarity (SS), matter collineations (MC) and kinematical self-similarity (KSS). We compare both tactics since they are quite similar (symmetry principles). We arrive to the conclusion that the LM is too restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS approaches bring us to obtain all the quantities depending on \int c(t)dt. Therefore, in order to study their behavior we impose some physical restrictions like for example the condition q<0 (accelerating universe). In this way we find that cc is a growing time function and Lambda is a decreasing time function whose sing depends on the equation of state, w, while the exponents of the scale factor must satisfy the conditions i=13αi=1\sum_{i=1}^{3}\alpha_{i}=1 and i=13αi2<1,\sum_{i=1}^{3}\alpha_{i}^{2}<1, ω\forall\omega, i.e. for all equation of state,, relaxing in this way the Kasner conditions. The behavior of GG depends on two parameters, the equation of state ω\omega and ϵ,\epsilon, a parameter that controls the behavior of c(t),c(t), therefore GG may be growing or decreasing.We also show that through the Lie method, there is no difference between to study the field equations under the assumption of a cc-var affecting to the curvature tensor which the other one where it is not considered such effects.Nevertheless, it is essential to consider such effects in the cases studied under the SS, MC, and KSS hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space Scienc

    Bianchi Type V Viscous Fluid Cosmological Models in Presence of Decaying Vacuum Energy

    Full text link
    Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ\Lambda is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter HH in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.Comment: 10 pages, 3 figure
    corecore