17 research outputs found

    Opinion - Nickel And Urease In Plants: Still Many Knowledge Gaps

    No full text
    We propose experimental strategies to expand our understanding of the role of Ni in plants, beyond the Ni-metallocenter of urease, still the only identified Ni-containing plant enzyme. While Ni has been considered an essential mineral for plants there is a clear lack of knowledge of its involvement in metabolic steps except the urease-catalyzed conversion of urea to ammonia and bicarbonate. We argue that urease (and hence, Ni) plays an important role in optimal N-use efficiency under various N regimes by recycling urea-N, which is generated endogenously exclusively from arginase action on arginine. We further suggest that urease and arginase may connect different metabolic compartments under stress situations, and therefore may be involved in stress tolerance. To determine possible non-urease roles of Ni we call for experimental manipulation of both Ni and N availability in urease-negative mutants. Plant ureases have been shown to have defense roles, distinct from their ureolytic activity, and we call for investigation of whether Ni helps maintain a urease conformation or stability for these non-ureolytic defense roles. The beneficial effects of Ni at upper concentration limits have not been fully examined. We posit a "Ni strategy" of plants whose growth/performance is stimulated by unusual amounts of soil Ni, for defense and/or for maximal N-use efficiency. While we know little about Ni and urease roles in N metabolism and defense, virtually nothing is known about Ni roles in plant-microbial 'consortia.' And, much of what we know of Ni and urease is limited to only a few plants, e.g. soybean, potato and Arabidopsis, and we suggest studies vigorously extended to other plants. © 2012 Elsevier Ireland Ltd.199-2007990Dixon, N.E., Gazzola, C., Blakeley, R.L., Zerner, B., A metalloenzyme. A simple biological role for nickel (1975) J. Am. Chem. Soc., 97, pp. 4131-4133Polacco, J.C., Nitrogen metabolism in soybean tissue culture. I. Assimilation of urea (1976) Plant Physiol., 58, pp. 350-357Polacco, J.C., Nitrogen metabolism in soybean tissue culture: II. Urea utilization and urease synthesis require Ni (1977) Plant Physiol., 59, pp. 827-830Eskew, D.L., Welch, R.M., Cary, E.E., Nickel: an essential micronutrient for legumes and possibly all higher plants (1983) Science, 222, pp. 621-623Eskew, D.L., Welch, R.M., Norvell, W.A., Nickel in higher plants: further evidence for an essential role (1984) Plant Physiol., 76, pp. 691-693Bailey, C.J., Boulter, D., Urease a typical seed protein of the Leguminosae (1971) The Chemotaxonomy of the Leguminosae, pp. 485-502. , Academic Press, New York, J.B. Harborne, D. Boulter, B.L. Turner (Eds.)Carlini, C.R., Polacco, J.C., Toxic properties of urease (Perspectives) (2008) Crop Sci., 48Hogan, M.E., Swift, I.E., Done, J., Urease assay and ammonia release from leaf tissues (1983) Phytochemistry, 22, pp. 663-667Walker, D.W., Graham, R.D., Madison, J.T., Cary, E.E., Welch, R.M., Effects of Ni deficiency on some nitrogen metabolites in cowpea (Vigna unguiculata L. Wap.) (1985) Plant Physiol., 79, pp. 474-479Wood, B.W., Reilly, C.C., Nyezepir, A.P., Mouse-ear of pecan: I. Symptomatology and occurrence (2004) HortScience, 39, pp. 87-94Wood, B.W., Reilly, C.C., Nyezepir, A.P., Mouse-ear of pecan: II. Influence of nutrient applications (2004) HortScience, 39, pp. 95-100Wood, B.W., Reilly, C.C., Nyezepir, A.P., Mouse-ear of pecan: a nickel deficiency (2004) HortScience, 39, pp. 1238-1242Bai, C., Reilly, C.C., Wood, B.W., Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage (2006) Plant Physiol., 140, pp. 433-443Mazzafera, P., Tezotto, T., Polacco, J.C., Nickel in plants, in: V.N. Uversdy, R.H. Kretsinger, E.A. Permyakov (Eds.), Encylopedia of Metalloproteins, Springer, in press (upcoming in January 2013)Brown, P.H., Welch, R.M., Cary, E.E., Nickel: a micronutrient essential for higher plants (1987) Plant Physiol., 85, pp. 801-803Brown, P.H., Welch, R.M., Cary, E.E., Checkai, R.T., Beneficial effects of nickel on plant growth (1987) J. Plant Nutr., 10, pp. 2125-2135Marschner, H., (1995) Mineral Nutrition of Higher Plants, , Academic Press Inc., San DiegoTodd, C.D., Polacco, J.C., Soybean cultivars 'Williams 82 and Maple Arrow produce both urea and ammonia uring ureide degradation (2004) J. Exp. Bot., 398, pp. 867-877Brown, P.H., Welch, R.M., Madison, J.T., Effect of nickel deficiency on soluble anion, amino acid and nitrogen levels in barley (1990) Plant Soil, 125, pp. 19-27Ma, X., OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice (2012) Plant J.Kutman, B.Y., Kutman, U.B., Cakmak, I., Nickel-enriched seed and externally supplied nickel improve growth and alleviate foliar urea damage in soybean (2012) Plant SoilPolacco, J.C., Hyten, D.L., Medeiros-Silva, M., Sleper, D.A., Bilyeu, K.D., Mutational analysis of the major soybean UreF paralogue involved in urease activation (2011) J. Exp. Bot., 62, pp. 3599-3608Yang, X.E., Baligar, V.C., Foster, J.C., Martens, D.C., Accumulation and transport of nickel in relation to organic acids in ryegrass and maize grown with different nickel levels (1997) Plant Soil, 196, pp. 271-276Stebbins, N., Holland, M.A., Cianzio, S.R., Polacco, J.C., Genetic tests of the roles of the embryonic ureases of soybean (1991) Plant Physiol., 97, pp. 1004-1010Gerendás, J., Sattelmacher, B., Significance of N source (urea vs. NH4NO3) and Ni supply for growth, urease activity and nitrogen metabolism of zucchini (Cucurbita pepo convar. Giromontiina) (1997) Plant Soil, 196, pp. 217-222Gerendás, J., Sattelmacher, B., Influence of Ni supply on growth and nitrogen metabolism of Brassica napus L. grown with NH4NO3 or urea as N source (1999) Ann. Bot., 83, pp. 65-71Alcazar, R., Polyamines: molecules with regulatory functions in plant abiotic stress tolerance (2010) Planta, 231, pp. 1237-1249Szabados, L., Savoure, A., Proline: a multifunctional amino acid (2010) Trends Plant Sci., 15, pp. 89-97Chen, H., Wilkerson, C.G., Kuchar, J.A., Phinney, B.S., Howe, G.A., Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut (2005) Proc. Natl. Acad. Sci U.S.A., 102, pp. 19237-19242Flores, T., Arginase-negative mutants exhibit increased NO signaling in root development (2008) Plant Physiol., 147, pp. 1937-1946Brownfield, D.L., Todd, C.D., Deyholos, M.K., Analysis of Arabidopsis arginase gene transcription patterns indicates specific biological functions for recently diverged paralogs (2008) Plant Mol. Biol., 67, pp. 429-440Jenkinson, C.P., Grody, W.W., Cederbaum, S.D., Comparative properties of arginases (1996) Comp. Biochem. Phys. B, 114, pp. 107-132Brauc, S., Overexpression of arginase in Arabidopsis thaliana influences defence responses against Botrytis cinerea (2012) Plant Biol., 14, pp. 39-45Gravot, A., Arginase induction represses gall development during clubroot infection in Arabidopsis (2012) Plant Cell Physiol., 53, pp. 901-911Wang, B.-Q., Zhang, Q.-F., Liu, J.-H., Li, G.-H., Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination (2011) Biochem. Biophys. Res. Commun., 413, pp. 10-16Wang, J., An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis (2011) J. Exp. Bot., 62, pp. 2899-2914Hanfrey, C., Sommer, S., Mayer, M.J., Burtin, D., Michael, A.J., Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity (2001) Plant J., 27, pp. 551-560Funck, D., Stadelhofer, B., Koch, W., Orn-δ-aminotransferase is essential for Arg catabolism but not for proline biosynthesis (2008) BMC Plant Biol., 8, p. 40Stránská, J., Kopečný, D., Tylichová, M., Snégaroff, J., Šebela, M., Orn δ-aminotransferase, an enzyme implicated in salt tolerance in higher plants (2008) Plant Signal. Behav., 3, pp. 929-935Gravot, A., Arginase induction represses gall development during clubroot infection in Arabidopsis (2012) Plant Cell Physiol., 53, pp. 901-911Flores, T., Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development (2008) Plant Physiol., 147, pp. 1936-1946Lanfranco, L., Guether, M., Bonfante, P., Arbuscular mycorrhizas and N acquisition by plants (2011) Ecological Aspects of Nitrogen Metabolism in Plants, pp. 52-68. , John Wiley & Sons, Incde Faria, S.M., Resende, A.S., Júnior, O.J.S., Boddey, R.M., Exploiting mycorrhizae and rhizobium symbioses to recover seriously degraded soils (2011) Ecological Aspects of Nitrogen Metabolism in Plants, pp. 195-215. , John Wiley & Sons, IncBrito, B., Rhizobium leguminosarum hupE encodes a nickel transporter required for hydrogenase activity (2010) J. Bacteriol., 192, pp. 925-935Brito Lopez, M.B., Diversity of nickel ligands in nodule cytosol, nickel transport, and expression of a nickel-dependent enzyme in endosymbiotic bacteria as affected by the legume host (2010) XIII National Meeting of the Spanish Society of Nitrogen Fixation and II Portuguese-Spanish Congress on Nitrogen Fixation, pp. 159-160. , Universidad Politécnica de Madrid, Zaragoza, SpainCacho, C., Brito, B., Palacios, J., Pérez-Conde, C., Cámara, C., Speciation of nickel by HPLC-UV/MS in pea nodules (2010) Talanta, 83, pp. 78-83Lundberg, D.S., Defining the core Arabidopsis thaliana root microbiome (2012) Nature, 488, pp. 86-90Weng, J.-K., Phillipe, R.N., Noel, J.P., The rise of chemodiversity in plants (2012) Science, 336, pp. 1667-1670Milo, R., Last, R.L.L., Achieving diversity in the face of constraints: lessons from metabolism (2012) Science, 336, pp. 1663-1667Holland, M.A., Polacco, J.C., Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants (1992) Plant Physiol., 98, pp. 942-948Splittstoesser, W.E., Metabolism of Arg by aging and 7 day old pumpkin seedling (1969) Plant Physiol., 44, pp. 361-366Kollöffel, C., Van Dijke, H.D., Mitochondrial arginase activity from cotyledons of developing and germinating seeds of Vicia faba L (1975) Plant Physiol., 55, pp. 507-510Matsubara, S., Suzuki, Y., Arginase activity in the cotyledons of soybean seedlings (1984) Physiol. Plant, 62, pp. 309-314Kang, J.H., Cho, Y.D., Purification and properties of arginase from soybean (Glycine max) axes (1990) Plant Physiol., 93, pp. 1230-1234Goldraij, A., Polacco, J.C., Arginase is inoperative in developing soybean seeds (1999) Plant Physiol., 119, pp. 297-304Zonia, L.E., Stebbins, N.E., Polacco, J.C., Essential role of urease in germination of nitrogen-limited Arabidopsis thaliana seeds (1995) Plant Physiol., 107, pp. 1097-1103King, J.E., Gifford, D.J., Amino acid utilization in seeds of loblolly pine during germination and early seedling growth. I. Arginine and arginase activity (1997) Plant Physiol., 113, pp. 1125-1135Mishra, D., Kar, M., Nickel in plant growth and metabolism (1974) Bot. Rev., 40, pp. 395-452Graham, R.D., Welch, R.M., A role for nickel in the resistance of plants to rust (1985) Australian Agronomy Conference, p. 337. , Australian Society of Agronomy, Hobart, A. Agronomy (Ed.)Freyermuth, S.K., Bacanamwo, M., Polacco, J.C., The soybean Eu3 gene encodes a Ni-binding protein necessary for urease activity (2000) Plant J., 21, pp. 53-60Wood, B.W., Reilly, C.C., Interaction of nickel and plant disease (2007) Mineral Nutrition and Plant Disease, pp. 217-247. , American Phytopathological Society Press, Minneapolis, L.E. Datnoff, W.H. Elmer, D.M. Huber (Eds.)Boyd, R.S., The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions (2007) Plant Soil, 293, pp. 153-176Wiebke-Ströhm, B., Ubiquitious urease affects soybean susceptibility to fungi (2012) Plant Mol. Biol., 79, pp. 75-87Martens, S.N., Boyd, R.S., The ecological significance of nickel hyperaccumulation: a plant chemical defense (1994) Oecologia, 98, pp. 379-384Boyd, R.S., Elemental defenses of plants by metals (2010) Nat. Educ. Knowl., 1, p. 6Boyd, R.S., Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses (2012) Plant Sci., 195, pp. 88-95Davis, M.A., Boyd, R.S., Dynamics of Ni-based defense and organic defences in the Ni hyperaccumulator, Streptanthus polygaloides (Brassicaceae) (2000) New Phytol., 146, pp. 211-217Brooks, R.R., (1987) Serpentine and its Vegetation. A Multidisciplinary Approach, , Dioscorides Press, Inc., Portland, ORColeman, C.M., Boyd, R.S., Eubanks, M.D., Extending the elemental defense hypothesis: dietary metal concentrations below hyperaccumulator levels could harm herbivores (2005) J. Chem. Ecol., 31, pp. 1669-1681Davis, M.A., Murphy, J.F., Boyd, R.S., Nickel increases susceptibility of a nickel hyperaccumulator to Turnip mosaic virus (2001) J. Environ. Qual., 40, pp. 85-90Wang, D., Wang, Y., Nickel sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny (2008) Environ. Pollut., 151, pp. 585-592Duxbury, T., Toxicity of heavy metals to soil bacteria (1981) FEMS Microbiol. Lett., 11, pp. 217-220Babich, H., Stotzky, G., Toxicity of nickel to microorganisms in soil: Influence of some physicochemical characteristics (1982) Environ. Pollut. A, 29, pp. 303-315Wang, K.L.-C., Li, H., Ecker, J.R., Ethylene biosynthesis and signaling networks (2002) Plant Cell, 14, pp. S131-S151Brown, P.H., Nickel (2007) Handbook of Plant Nutrition, pp. 395-409. , CRC Press, Boca Raton, FL, A.V. Barker, D.J. Pilbeam (Eds.)Lau, O.L., Yang, S.F., Inhibition of ethylene production by cobaltous ion (1976) Plant Physiol., 58, pp. 114-117McGarvey, D.J., Christoffersen, R.E., Characterization and kinetic parameters of ethylene-forming enzyme from avocado fruit (1992) J. Biol. Chem., 267, pp. 5964-5967Carter, E.L., Tronrud, D.E., Taber, S.R., Karplus, P.A., Hausinger, R.P., Iron-containing urease in a pathogenic bacterium (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 13095-13099Itamura, H., Ohno, Y., Yamamura, H., Characteristics of fruit softening in Japanese persimmon (1997) Acta Horticult., 685, pp. 37-44Zheng, Q.L., Nakatsuka, A., Itamura, H., Extraction and characterization of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase from wounded persimmon fruit (2005) J. Jap. Soc. Horticult. Sci., 74, pp. 159-166Zheng, Q.L., Nakatsuka, A., Matsumoto, T., Itamura, H., Pre-harvest nickel application to the calyx of Saijo persimmon fruit prolongs postharvest shelf-life (2006) Postharv. Biol. Technol., 42, pp. 98-103Tezotto, T., Favarin, J.L., Azevedo, R.A., Alleoni, L.R.F., Mazzafera, P., Coffee is highly tolerant to cadmium, nickel and zinc: plant and soil nutritional status, metal distribution and bean yield (2012) Field Crops Res., 125, pp. 25-34Mazzafera, P., Chemical composition of defective coffee beans (1999) Food Chem., 64, pp. 547-554Bari, R., Jones, J., Role of plant hormones in plant defence responses (2009) Plant Mol. Biol., 69, pp. 473-488Gerendás, J., Polacco, J.C., Freyermuth, S.K., Sattelmacher, B., Significance of nickel for plant growth and metabolism (1999) J. Plant Nutr. Soil Sci., 162, pp. 241-256Winkler, R.G., Polacco, J.C., Eskew, D.L., Welch, R.M., Nickel is not required for apourease synthesis in soybean seeds (1983) Plant Physiol., 72, pp. 262-263Cataldo, D.A., Garland, T.R., Wildung, R.E., Nickel in plants II. Distribution and chemical form in soybean plants (1978) Plant Physiol., 62, pp. 566-570Checkai, R.T., Norvell, W.A., A recirculating resin-buffered hydroponic system for controlling nutrient ion activities (1992) J. Plant Nutr., 15, pp. 871-892Liu, L.-H., Ludewig, U., Frommer, W.B., von Wirén, N., AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis (2003) Plant Cell, 15, pp. 790-800Kojima, S., Bohner, A., Gassert, B., Yuan, L., Wirén, N., AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots (2007) Plant J., 52, pp. 30-40Shima, S., The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site (2008) Science, 321, pp. 572-575Sumner, J.B., The isolation and crystallization of the enzyme urease (1926) J. Biol. Chem., 69, pp. 435-441Wöhler, F., Ueber künstliche Bildung des Harnstoffs (1828) Ann. Phys., 88, pp. 253-256Zerner, B., Recent advances in the chemistry of an old enzyme, urease (1991) Bioinorg. Chem., 19, pp. 116-131Krajewska, B., Ureases, I., Functional, catalytic and kinetic properties: a review (2009) J. Mol. Catal. B: Enzym., 59, pp. 9-21Park, I.-S., Hausinger, R.P., Site-directed mutagenesis of Klebsiella aerogenes urease: identification of histidine residues that appear to function in nickel ligation, substrate binding, and catalysis (1993) Protein Sci., 2, pp. 1034-1041Radzicka, A., Wolfenden, R., A proficient enzyme (1995) Science, 267, pp. 90-93Karplus, P.A., Pearson, M.A., Hausinger, R.P., 70 years of crystalline urease: what have we learned? (1997) ChemInform, 28, pp. 330-337Van Etten, C.H., Kwolek, W.F., Peters, J.E., Barclary, A.S., Plant seeds as protein sources of food or feed. Evaluation based on amino acid composition of 379 species (1967) J. Agric. Food Chem., 15, pp. 1077-1089Goldraij, A., Polacco, J.C., Arginine degradation by arginase in mitochondria of soybean seedling cotyledons (2000) Planta, 210, pp. 652-658Polacco, J.C., Holland, M.A., Roles of urease in plant cells (1993) International Review of Cytology, pp. 65-103. , Academic Press, San Diego, W.J. Kwang, J. Jonathan (Eds.)Faye, L., Greenwood, J.S., Chrispeels, M.J., Urease in jack bean (Canavalia ensiformis [L.] DC) seeds is a cytosolic protein (1986) Planta, 168, pp. 579-585Holland, M.A., Griffin, J.D., Elise Meyer-Bothling, L., Polacco, J.C., Developmental genetics of the soybean urease isozymes (1987) Dev. Genet., 8, pp. 375-387Witte, C.-P., Tiller, S., Isidore, E., Davies, H.V., Taylor, M.A., Analysis of two alleles of the urease gene from potato: polymorphisms, expression, and extensive alternative splicing of the corresponding mRNA (2005) J. Exp. Bot., 56, pp. 91-99Lee, E.J., Yoo, K.S., Jifon, J., Patil, B.S., Characterization of shortday onion cultivars of 3 pungency levels with flavor precursor, free amino acid, sulfur, and sugar contents (2009) J. Food Sci., 74, pp. 475-480Ninomiya, A., Murata, Y., Tada, M., Shimoishi, Y., Change in allantoin and arginine contents in Dioscorea opposita 'Tsukuneimo' during the growth (2004) J. Jap. Soc. Horticult. Sci., 73, pp. 546-551Nordin, A., Näsholm, T., Nitrogen storage forms in nine boreal understorey plant species (1997) Oecologia, 110, pp. 487-492Bausenwein, U., Millard, P., Thornton, B., Raven, J.A., Seasonal nitrogen storage and remobilization in the forb Rumex acetosa (2001) Funct. Ecol., 15, pp. 370-377Rennenberg, H., Wildhagen, H., Ehlting, B., Nitrogen nutrition of poplar trees (2010) Plant Biol., 12, pp. 275-291Elser, J.J., Fagan, W.F., Subramanian, S., Kumar, S., Signature of ecological resource availability in the animal and plant proteomes (2006) Mol. Biol. Evol., 23, pp. 1946-1951Amarante, L., Lima, J.D., Sodek, L., Growth and stress conditions cause similar changes in xylem amino acids for different legume species (2006) Environ. Exp. Bot., 58, pp. 123-129Brychkova, G., Alikulov, Z., Fluhr, R., Sagi, M., A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant (2008) Plant J., 54, pp. 496-509Vogels, G.D., Drift, C., Degradation of purines and pyrimidines by microorganisms (1976) Bacteriol. Rev., 40, pp. 403-468Marzluf, G.A., Regulation of nitrogen metabolism and gene expression in fungi (1981) Microbiol. Rev., 45, pp. 437-461Cooper, T.G., Nitrogen metabolism in Saccharomyces cerevisiae (1982) The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, pp. 39-99. , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, J.N. Strathern, E.W. Jones, J.R. Broach (Eds.)Kinghorn, J.R., Fluri, R., Genetic studies of purine breakdown in the fission yeast Schizosaccharomyces pombe (1984) Curr. Genet., 8, pp. 99-105Piedras, P., Muñoz, A., Aguilar, M., Pineda, M., Allantoate amidinohydrolase (allantoicase) from Chlamydomonas reinhardtii: its purification and catalytic and molecular characterization (2000) Arch. Biochem. Biophys., 378, pp. 340-348Winkler, R.G., Polacco, J.C., Blevins, D.G., Randall, D.D., Enzymic degradation of allantoate in developing soybeans (1985) Plant Physiol., 79, pp. 787-793Winkler, R.G., Blevins, D.G., Polacco, J.C., Randall, D.D., Ureide catabolism of soybeans. II. Pathway of catabolism in intact leaf tissue (1987) Plant Physiol., 83, pp. 585-591Winkler, R.G., Blevins, D.G., Randall, D.D., Ureide catabolism in soybeans. III. Ureidoglycolate amidohydrolase and allantoate amidohydrolase are activities of an allantoate degrading enzyme complex (1988) Plant Physiol., 86, pp. 1084-1088Werner, A.K., Sparkes, I.A., Romeis, T., Witte, C.-P., Identification, biochemical characterization, and subcellular localization of allantoate amidohydrolases from Arabidopsis and soybean (2008) Plant Physiol., 146, pp. 418-430Todd, C.D., Polacco, J.C., AtAAH encodes a protein with allantoate amidohydrolase activity from Arabidopsis thaliana (2006) Planta, 223, pp. 1108-1113Werner, A.K., Romeis, T., Witte, C.-P., Ureide catabolism in Arabidopsis thaliana and Escherichia coli (2009) Nat. Chem. Biol., 6, pp. 19-21Stahlhut, R.W., Widholm, J.M., Ureide catabolism by soybean [Glycine-Max (L) Merrill] cell-suspension cultures. I. Urea is not an intermediate in allantoin degradation (1989) J. Plant Physiol., 134, pp. 85-89Díaz-Leal, J.L., Gálvez-Valdivieso, G., Fernández, J., Pineda, M., Alami
    corecore