57 research outputs found

    Sensing metabolites using donor-acceptor nanodistributions in fluorescence resonance energy transfer

    Get PDF
    Before fluorescence sensing techniques can be applied to media as delicate and complicated as human tissue, an adequate interpretation of the measured observables is required, i.e., an inverse problem needs to be solved. Recently we have solved the inverse problem relating to the kinetics of fluorescence resonance energy transfer (FRET), which clears the way for the determination of the donor-acceptor distribution function in FRET assays. In this letter this approach to monitoring metabolic processes is highlighted and the application to glucose sensing demonstrated

    Influence of indomethacin on lens regeneration in the newt notophthalmus viridescens

    Full text link
    Following lentectomy newts were injected with indomethacin in a variety of carrier solutions at doses ranging from 1.2–120 mg/kg body weight every other day for 15–17 days. The results show that injection of this drug according to the regimen used has no significant effect on regeneration of the lens. The data suggest, but do not prove, that prostaglandins may not play a major role in the early phases of lens regeneration in the newt.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47503/1/427_2004_Article_BF00848434.pd

    A new approach to fluorescence lifetime sensing based on molecular distributions

    No full text
    Fluorescence resonance energy transfer (FRET) from donor to acceptor molecules is one of the most powerful techniques for monitoring structure and dynamics. This is because FRET has a strong spatial dependence with angstroms resolution. This dependence includes the simplest case of a random distribution of acceptors for which an analytical solution exists for the fluorescence impulse response I(t). However, in general the acceptor distribution function p(r) is not random and a unique solution cannot be found for I(t). In many important applications of FRET eg in proteins, the simple random treatment is quite inappropriate and yet the information concerning conformation changes is preserved in p(r). One approach, which as been applied to the problem of determining p(r), is to make some assumptions as to its form eg Gaussian and then try to use this to describe I(t)

    Near-infrared assay for glucose determination

    No full text
    A new glucose sensing system based on near infra-red fluorescence resonance energy transfer (FRET) from CocanavalinA-allophycocyanin to dextran labelled malachite green is demonstrated. Single-photon timing fluorescence lifetime measurements have enabled us to investigate and understand the quenching kinetics in terms of the dimensionality of energy transfer

    Fluorescence resonance energy transfer from allophycocyanin to malachite green

    No full text
    The near-infrared fluorescence resonance energy transfer kinetics of the phycobiliprotein allophycocyanin (APC) to malachite green (MG) have been investigated. A model is proposed to account for the fluorescence decay whereby MG binds to APC with a donor-acceptor site distribution which can be best described by 2D quenching kinetics. The results highlight a potential fallacy when interpreting the dimensionality of complex systems or the location of binding sites from Förster decay kinetics. The use of APC in trans-dermal measurements is proposed
    • …
    corecore