1,915 research outputs found

    Chasing the identification of ASCA Galactic Objects (ChIcAGO): An X-ray survey of unidentified sources in the galactic plane. I : Source sample and initial results

    Get PDF
    We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the Fx 10-13 to 10-11 erg cm -2 s-1 X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multiwavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3′ of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the Fx 10-13 to 10-11 erg cm -2 s-1 flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding wind binaries, X-ray binaries, and magnetars. There is also another primary population that is still unidentified but, on the basis of its X-ray and infrared properties, likely comprises partly Galactic sources and partly active galactic nuclei.Peer reviewedSubmitted Versio

    Broilers fed a low protein diet supplemented with synthetic amino acids maintained growth performance and retained intestinal integrity while reducing nitrogen excretion when raised under poor sanitary conditions

    Get PDF
    The present study investigated the effects of supplementing a low protein (LP) diet supplemented with key essential amino acids (AA) to broilers on growth performance, intestinal tract function, blood metabolites, and nitrogen excretion when the animals were maintained under various sanitary conditions for 35 D after hatching. Three hundred eighty-four one-day-old male broilers (Ross 308) were randomly allotted to groups that received one of 6 dietary treatments in a 2 Ă— 3 factorial arrangement (i.e., 2 environmental conditions and 3 dietary treatments) to give 8 replicates per treatment. Broilers were challenged with 2 environmental conditions (sanitary vs. poor sanitary). The dietary treatments were (1) high protein (HP) diet, (2) LP diet, and (3) LP diet with synthetic key essential AA (LPA): the LP diet was supplemented with synthetic AA up to the required levels for broilers. On day 14, birds consumed the LP diet impaired growth performance compared with those fed the HP diet, while the average daily weight gain-to-feed conversion ratio of birds fed the LPA diet improved to the level of birds fed the HP diet under poor sanitary conditions (P < 0.05). Broilers raised under poor sanitary conditions and fed the LP diet displayed higher (P < 0.05) zonula occludens (ZO-1) expression on day 14 than broilers fed either the HP or LPA diet. Under sanitary conditions, birds fed HP and LPA diets showed higher villus height and crypt depth compared with those of broilers fed the LP diet on day 35. Moreover, broilers raised in the poor sanitary environment had higher (P < 0.05) serum endotoxins than those raised in the sanitary environment. Broilers fed the LPA diet showed reduced (P < 0.05) nitrogen excretion on days 14 and 35 compared with those fed the LP and HP diets independent of the environment. In conclusion, the LPA diet did not impair growth performance under poor sanitary conditions for 14 D after hatch while resulting in lower nitrogen excretion in any environment conditions throughout the experiment

    Study of an Alternate Mechanism for the Origin of Fermion Generations

    Full text link
    In usual extended technicolor (ETC) theories based on the group SU(NETC)ETC{\rm{SU}(N_{ETC}})_{ETC}, the quarks of charge 2/3 and -1/3 and the charged leptons of all generations arise from ETC fermion multiplets transforming according to the fundamental representation. Here we investigate a different idea for the origin of SM fermion generations, in which quarks and charged leptons of different generations arise from ETC fermions transforming according to different representations of SU(NETC)ETC{\rm{SU}(N_{ETC}})_{ETC}. Although this mechanism would have the potential, {\it a priori}, to allow a reduction in the value of NETCN_{ETC} relative to conventional ETC models, we show that, at least in simple models, it is excluded by the fact that the technicolor sector is not asymptotically free or by the appearance of fermions with exotic quantum numbers which are not observed.Comment: 6 pages, late

    Nonmonotonic inelastic tunneling spectra due to surface spin excitations in ferromagnetic junctions

    Get PDF
    The paper addresses inelastic spin-flip tunneling accompanied by surface spin excitations (magnons) in ferromagnetic junctions. The inelastic tunneling current is proportional to the magnon density of states which is energy-independent for the surface waves and, for this reason, cannot account for the bias-voltage dependence of the observed inelastic tunneling spectra. This paper shows that the bias-voltage dependence of the tunneling spectra can arise from the tunneling matrix elements of the electron-magnon interaction. These matrix elements are derived from the Coulomb exchange interaction using the itinerant-electron model of magnon-assisted tunneling. The results for the inelastic tunneling spectra, based on the nonequilibrium Green's function calculations, are presented for both parallel and antiparallel magnetizations in the ferromagnetic leads.Comment: 9 pages, 4 figures, version as publishe

    A Charged Rotating Black Ring

    Full text link
    We construct a supergravity solution describing a charged rotating black ring with S^2xS^1 horizon in a five dimensional asymptotically flat spacetime. In the neutral limit the solution is the rotating black ring recently found by Emparan and Reall. We determine the exact value of the lower bound on J^2/M^3, where J is the angular momentum and M the mass; the black ring saturating this bound has maximum entropy for the given mass. The charged black ring is characterized by mass M, angular momentum J, and electric charge Q, and it also carries local fundamental string charge. The electric charge distributed uniformly along the ring helps support the ring against its gravitational self-attraction, so that J^2/M^3 can be made arbitrarily small while Q/M remains finite. The charged black ring has an extremal limit in which the horizon coincides with the singularity.Comment: 25 pages, 1 figur

    Skeletal Shape Correspondence Through Entropy

    Get PDF
    We present a novel approach for improving the shape statistics of medical image objects by generating correspondence of skeletal points. Each object's interior is modeled by an s-rep, i.e., by a sampled, folded, two-sided skeletal sheet with spoke vectors proceeding from the skeletal sheet to the boundary. The skeleton is divided into three parts: the up side, the down side, and the fold curve. The spokes on each part are treated separately and, using spoke interpolation, are shifted along that skeleton in each training sample so as to tighten the probability distribution on those spokes' geometric properties while sampling the object interior regularly. As with the surface/boundary-based correspondence method of Cates et al., entropy is used to measure both the probability distribution tightness and the sampling regularity, here of the spokes' geometric properties. Evaluation on synthetic and real world lateral ventricle and hippocampus data sets demonstrate improvement in the performance of statistics using the resulting probability distributions. This improvement is greater than that achieved by an entropy-based correspondence method on the boundary points

    Higgs-Boson Production Associated with a Single Bottom Quark in Supersymmetric QCD

    Full text link
    Due to the enhancement of the couplings between Higgs boson and bottom quarks in the minimal sypersymmetric standard model (MSSM), the cross section of the process pp(p\bar{p}) \to h^0b(h^0\bar{b})+X at hadron colliders can be considerably enhanced. We investigated the production of Higgs boson associated with a single high-p_T bottom quark via subprocess bg(\bar{b}g) \to h^0b(h^0\bar{b}) at hadron colliders including the next-to-leading order (NLO) QCD corrections in MSSM. We find that the NLO QCD correction in the MSSM reaches 50%-70% at the LHC and 60%-85% at the Fermilab Tevatron in our chosen parameter space.Comment: accepted by Phys. Rev.
    • …
    corecore