8 research outputs found

    Predicting new superhard phases

    No full text
    The search for new superhard materials is of great importance in view of their major roles played for the fundamental science and the industrial applications. Recent experimental synthesis has made several great successes, but the synthetic difficulty in general remains. Materials design technique is greatly desirable as a request to assist experiment. In this paper, two rational theoretical methods of design of superhard materials have been reviewed: (i) substitutional method, which is successful in some cases, but limited to the known chemically related phases, and (ii) global free energy minimization method, which can be applied to large scale of materials with the only information of chemical compositions. The successful applications have been described and the main principles are summarized.Пошуки нових надтвердих матеріалів дуже важливі як з погляду їх ролі для фундаментальної науки, так і промислового застосування. Нещодавно було проведено декілька дуже успішних експериментів синтезу, однак труднощі синтезу загалом збереглися. Для допомоги в експериментах дуже потрібна техніка проектування матеріалів. У даній статті розглянуто два раціональні теоретичні методи дизайну надтвердих матеріалів: (1) метод заміщення, який є успішним у деяких випадках, але обмежується відомими хімічно спорідненими фазами, і (2) метод глобальної мінімізації вільної енергії, який може бути застосований до великої кількості матеріалів при наявності тільки інформації про хімічний склад.Поиски новых сверхтвердых материалов очень важны как с точки зрения их роли для фундаментальной науки, так и промышленного применения. Недавно было проведено несколько очень успешных экспериментов синтеза, однако трудности синтеза в общем сохранились. Для помощи в экспериментах нужна техника проектирования материалов. В данной статье рассмотрены два рациональных теоретических метода дизайна сверхтвердых материалов: (1) метод замещения, который является успешным в некоторых случаях, но ограничивается известными химически родственными фазами, и (2) метод глобальной минимизации свободной энергии, который может быть применен к большому количеству материалов при наличии только информации о химических составах

    Microscopic models of hardness

    No full text
    Recent developments in the field of microscopic hardness models have been reviewed. In these models, the theoretical hardness is described as a function of the bond density and bond strength. The bond strength may be characterized by energy gap, reference potential, electron-holding energy or Gibbs free energy, and different expressions of bond strength may lead to different hardness models. In particular, the hardness model based on the chemical bond theory of complex crystals has been introduced in detail. The examples of the hardness calculations of typical crystals, such as spinel Si₃N₄, stishovite SiO₂, B₁₂O₂, ReB₂, OsB₂, RuB₂, and PtN₂, are presented. These microscopic models of hardness would play an important role in search for new hard materials.Зроблено огляд останніх розробок в області мікромоделей твердості. У цих моделях теоретичну твердість описано як функцію щільності та міцності зв’язку. Міцність зв’язку може бути охарактеризована шириною забороненої зони, опорним потенціалом, енергією утримання електрона або вільною енергією Гіббса. Тому різні вирази міцності зв’язку приведуть до різних моделей міцності. Зокрема, докладно описано модель твердості, основану на теорії хімічного зв’язку складних кристалів. Наведено приклади розрахунків твердості типових кристалів, таких як шпінель Si₃N₄, стишовіт SiO₂, B₁₂O₂, ReB₂, OsB₂, RuB₂ и PtN₂. Ці мікромоделі твердості будуть грати важливу роль в пошуку нових твердих матеріалів.Дан обзор последних разработок в области микромоделей твердости. В этих моделях теоретическая твердость описана как функция плотности и прочности связи. Прочность связи может быть охарактеризована шириной запрещенной зоны, опорным потенциалом, энергией удержания электрона или свободной энергией Гиббса. Поэтому различные выражения прочности связи приведут к различным моделям твердости. В частности, подробно описана модель твердости, основанная на теории химической связи сложных кристаллов. Привены примеры расчета твердости типичных кристаллов, таких как шпинель Si₃N₄, стишовит SiO₂, B₁₂O₂, ReB₂, OsB₂, RuB₂ и PtN₂. Эти микромодели твердости будут играть важную роль в поиске новых твердых материалов
    corecore