67 research outputs found

    D--branes and Spinning Black Holes

    Get PDF
    We obtain a new class of spinning charged extremal black holes in five dimensions, considered both as classical configurations and in the Dirichlet(D)--brane representation. The degeneracy of states is computed from the D--brane side and the entropy agrees perfectly with that obtained from the black hole side.Comment: 10 pages, harvmac ``b'' mode (minor changes

    Macroscopic and Microscopic Entropy of Near-Extremal Spinning Black Holes

    Get PDF
    A seven parameter family of five-dimensional black hole solutions depending on mass, two angular momenta, three charges and the asymptotic value of a scalar field is constructed. The entropy is computed as a function of these parameters both from the Bekenstein-Hawking formula and from the degeneracies of the corresponding D-brane states in string theory. The expressions agree at and to leading order away from extremality.Comment: 7 pages, harvma

    Delocalized, non-SUSY pp-branes, tachyon condensation and tachyon matter

    Full text link
    We construct non-supersymmetric pp-brane solutions of type II supergravities in arbitrary dimensions (dd) delocalized in one of the spatial transverse directions. By a Wick rotation we convert these solutions into Euclidean pp-branes delocalized in the transverse time-like direction. The former solutions in d=10d=10 nicely interpolate between the (p+1)(p+1)-dimensional non-BPS D-branes and the pp-dimensional BPS D-branes very similar to the picture of tachyon condensation for the tachyonic kink solution on the non-BPS D-branes. On the other hand the latter solutions interpolate between the (p+1)(p+1)-dimensional non-BPS D-branes and the tachyon matter supergravity configuration very similar to the picture of rolling tachyon on the non-BPS D-branes.Comment: 15 pages, typos correcte

    The Inverse Scattering Method, Lie-Backlund Transformations and Solitons for Low-energy Effective Field Equations of 5D String Theory

    Full text link
    In the framework of the 5D low-energy effective field theory of the heterotic string with no vector fields excited, we combine two non-linear methods in order to construct a solitonic field configuration. We first apply the inverse scattering method on a trivial vacuum solution and obtain an stationary axisymmetric two-soliton configuration consisting of a massless gravitational field coupled to a non-trivial chargeless dilaton and to an axion field endowed with charge. The implementation of this method was done following a scheme previously proposed by Yurova. We also show that within this scheme, is not possible to get massive gravitational solitons at all. We then apply a non-linear Lie-Backlund matrix transformation of Ehlers type on this massless solution and get a massive rotating axisymmetric gravitational soliton coupled to axion and dilaton fields endowed with charges. We study as well some physical properties of the constructed massless and massive solitons and discuss on the effect of the generalized solution generating technique on the seed solution and its further generalizations.Comment: 17 pages in latex, changed title, improved text, added reference

    On a class of 4D Kahler bases and AdS_5 supersymmetric Black Holes

    Get PDF
    We construct a class of toric Kahler manifolds, M_4, of real dimension four, a subset of which corresponds to the Kahler bases of all known 5D asymptotically AdS_5 supersymmetric black-holes. In a certain limit, these Kahler spaces take the form of cones over Sasaki spaces, which, in turn, are fibrations over toric manifolds of real dimension two. The metric on M_4 is completely determined by a single function H(x), which is the conformal factor of the two dimensional space. We study the solutions of minimal five dimensional gauged supergravity having this class of Kahler spaces as base and show that in order to generate a five dimensional solution H(x) must obey a simple sixth order differential equation. We discuss the solutions in detail, which include all known asymptotically AdS_5 black holes as well as other spacetimes with non-compact horizons. Moreover we find an infinite number of supersymmetric deformations of these spacetimes with less spatial isometries than the base space. These deformations vanish at the horizon, but become relevant asymptotically.Comment: 34 pages, 3 figures. v2: formula (8.35) and other minor typos corrected; references added; accepted for publication in JHE

    A Charged Rotating Black Ring

    Full text link
    We construct a supergravity solution describing a charged rotating black ring with S^2xS^1 horizon in a five dimensional asymptotically flat spacetime. In the neutral limit the solution is the rotating black ring recently found by Emparan and Reall. We determine the exact value of the lower bound on J^2/M^3, where J is the angular momentum and M the mass; the black ring saturating this bound has maximum entropy for the given mass. The charged black ring is characterized by mass M, angular momentum J, and electric charge Q, and it also carries local fundamental string charge. The electric charge distributed uniformly along the ring helps support the ring against its gravitational self-attraction, so that J^2/M^3 can be made arbitrarily small while Q/M remains finite. The charged black ring has an extremal limit in which the horizon coincides with the singularity.Comment: 25 pages, 1 figur

    Classification of Higher Dimensional Spacetimes

    Full text link
    We algebraically classify some higher dimensional spacetimes, including a number of vacuum solutions of the Einstein field equations which can represent higher dimensional black holes. We discuss some consequences of this work.Comment: 16 pages, 1 Tabl

    QCD Sum Rules and the Pi(1300) Resonance

    Full text link
    Global fits to the shape of the first QCD Laplace sum rule exhibiting sensitivity to pion-resonance [Π(1300)\Pi (1300)] parameters are performed, leading to predictions for the pion-resonance mass and decay constant. Two scenarios are considered which differ only in their treatment of the dimension-six quark condensate .Thefirstscenarioassumesaneffectivescalefor. The first scenario assumes an effective scale for from other sum-rule applications which is assumed to be independent of the physical value of the quark mass, while the second scenario requires self-consistency between the value of and the current algebra constraint 2m=−fπ2mπ22m=-f_\pi^2m_\pi^2. Predictions of the pion-resonance mass MπM_\pi and decay constant FπF_\pi are obtained in these two scenarios. A byproduct of this analysis is a prediction of the renormalization-group invariant quark mass (m^u+m^d)/2(\hat m_u+\hat m_d)/2.Comment: latex, 8 pages, 5 figure

    Landau-Khalatnikov-Fradkin Transformations and the Fermion Propagator in Quantum Electrodynamics

    Get PDF
    We study the gauge covariance of the massive fermion propagator in three as well as four dimensional Quantum Electrodynamics (QED). Starting from its value at the lowest order in perturbation theory, we evaluate a non-perturbative expression for it by means of its Landau-Khalatnikov-Fradkin (LKF) transformation. We compare the perturbative expansion of our findings with the known one loop results and observe perfect agreement upto a gauge parameter independent term, a difference permitted by the structure of the LKF transformations.Comment: 9 pages, no figures, uses revte

    T-Duality For String in Horava-Lifshitz Gravity

    Full text link
    We continue our study of the Lorentz breaking string theories. These theories are defined as string theory with modified Hamiltonian constraint which breaks the Lorentz symmetry of target space-time. We analyze properties of this theory in the target space-time that possesses isometry along one direction. We also derive the T-duality rules for Lorentz breaking string theories and show that they are the same as that of Buscher's T-duality for the relativistic strings.Comment: 17 pages, references adde
    • 

    corecore