434 research outputs found
Superparamagnetic-like ac susceptibility behavior in a "partially disordered antiferromagnetic" compound, CaCoRhO
We report the results of dc and ac magnetization measurements as a function
of temperature (1.8 - 300 K) for the spin chain compound, CaCoRhO,
which has been recently reported to exhibit a partially disordered
antiferromagnetic (PDAF) structure in the range 30 - 90 K and spin-glass
freezing below 30 K. We observe an unexpectedly large frequency dependence of
ac susceptibility in the T range 30 - 90 K, typical of superparamagnets. In
addition, we find that there is no difference in the isothermal remanent
magnetization behavior for the two regimes below 90 K. These findings call for
more investigations to understand the magnetism of this compound.Comment: 4 pages, 3 figure
An Accurate Determination of the Exchange Constant in Sr_2CuO_3 from Recent Theoretical Results
Data from susceptibility measurements on Sr_2CuO_3 are compared with recent
theoretical predictions for the magnetic susceptibility of the
antiferromagnetic spin-1/2 Heisenberg chain. The experimental data fully
confirms the theoretical predictions and in turn we establish that Sr_2CuO_3
behaves almost perfectly like a one-dimensional antiferromagnet with an
exchange coupling of J = 1700^{+150}_{-100}K.Comment: revised and reformatted paper with new title to appear in Phys. Rev B
(Feb.1996). 3 pages (revtex) with 3 embedded figures (macro included). A
complete postscript file is available from
http://fy.chalmers.se/~eggert/expsusc.ps or by request from
[email protected]
Susceptibility of the Spin 1/2 Heisenberg Antiferromagnetic Chain
Highly accurate results are presented for the susceptibility, of
the Heisenberg antiferromagnetic chain for all temperatures, using the
Bethe ansatz and field theory methods. After going through a rounded peak,
approaches its asympotic zero-temperature value with infinite slope.Comment: 8 pages and 3 postscript figures appended (uuencoded), Revtex, Report
#:UBCTP-94-00
CuSiO_3 : a quasi - one - dimensional S=1/2 antiferromagnetic chain system
CuSiO_3, isotypic to the spin - Peierls compound CuGeO_3, was discovered
recently as a metastable decomposition product of the silicate mineral
dioptase, Cu_6Si_6O_{18}\cdot6H_2O. We investigated the physical properties of
CuSiO_3 using susceptibility, magnetization and specific heat measurements on
powder samples. The magnetic susceptibility \chi(T) is reproduced very well
above T = 8 K by theoretical calculations for an S=1/2 antiferromagnetic
Heisenberg linear chain without frustration (\alpha = 0) and a nearest -
neighbor exchange coupling constant of J/k_{B} = 21 K, much weaker than in
CuGeO_3. Below 8 K the susceptibility exhibits a substantial drop. This feature
is identified as a second - order phase transition at T_{0} = 7.9 K by specific
heat measurements. The influence of magnetic fields on T_{0} is weak, and ac -
magnetization measurements give strong evidence for a spin - flop - phase at
\mu_0H_{SF} ~ 3 T. The origin of the magnetic phase transition at T_{0} = 7.9 K
is discussed in the context of long - range antiferromagnetic order (AF) versus
spin - Peierls(SP)order. Susceptibility and specific heat results support the
AF ordered ground state. Additional temperature dependent ^{63,65}Cu nuclear
quadrupole resonance experiments have been carried out to probe the Cu^{2+}
electronic state and the spin dynamics in CuSiO_3
On the ground state energy scaling in quasi-rung-dimerized spin ladders
On the basis of periodic boundary conditions we study perturbatively a large
N asymptotics (N is the number of rungs) for the ground state energy density
and gas parameter of a spin ladder with slightly destroyed rung-dimerization.
Exactly rung-dimerized spin ladder is treated as the reference model. Explicit
perturbative formulas are obtained for three special classes of spin ladders.Comment: 4 page
Coexistence of double alternating antiferromagnetic chains in (VO)_2P_2O_7 : NMR study
Nuclear magnetic resonance (NMR) of 31P and 51V nuclei has been measured in a
spin-1/2 alternating-chain compound (VO)_2P_2O_7. By analyzing the temperature
variation of the 31P NMR spectra, we have found that (VO)_2P_2O_7 has two
independent spin components with different spin-gap energies. The spin gaps are
determined from the temperature dependence of the shifts at 31P and 51V sites
to be 35 K and 68 K, which are in excellent agreement with those observed in
the recent inelastic neutron scattering experiments [A.W. Garrett et al., Phys.
Rev. Lett. 79, 745 (1997)]. This suggests that (VO)_2P_2O_7 is composed of two
magnetic subsystems showing distinct magnetic excitations, which are associated
with the two crystallographically-inequivalent V chains running along the b
axis. The difference of the spin-gap energies between the chains is attributed
to the small differences in the V-V distances, which may result in the
different exchange alternation in each magnetic chain. The exchange
interactions in each alternating chain are estimated and are discussed based on
the empirical relation between the exchange interaction and the interatomic
distance.Comment: 10 pages, 11 embedded eps figures, REVTeX, Submitted to Phys. Rev.
Investigation of thermal and magnetic properties of defects in a spin-gap compound NaV2O5
The specific heat, magnetic susceptibility and ESR signals of a Na-deficient
vanadate Na_xV_2O_5 (x=1.00 - 0.90) were studied in the temperature range 0.07
- 10 K, well below the transition point to a spin-gap state. The contribution
of defects provided by sodium vacancies to the specific heat was observed. It
has a low temperature part which does not tend to zero till at least 0.3 K and
a high temperature power-like tail appears above 2 K. Such dependence may
correspond to the existence of local modes and correlations between defects in
V-O layers. The magnetic measurements and ESR data reveal S=1/2 degrees of
freedom for the defects, with their effective number increasing in temperature
and under magnetic field. The latter results in the nonsaturating magnetization
at low temperature. No long-range magnetic ordering in the system of defects
was found. A model for the defects based on electron jumps near vacancies is
proposed to explain the observed effects. The concept of a frustrated
two-dimensional correlated magnet induced by the defects is considered to be
responsible for the absence of magnetic ordering.Comment: 6 pages, 8 figure
Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd
A theory for the equilibrium low-temperature magnetization M of a diluted
Heisenberg antiferromagnetic chain is presented. The magnetization curve, M
versus B, is calculated using the exact contributions of finite chains with 1
to 5 spins, and the "rise and ramp approximation" for longer chains. Some
non-equilibrium effects that occur in a rapidly changing B, are also
considered. Specific non-equilibrium models based on earlier treatments of the
phonon bottleneck, and of spin flips associated with cross relaxation and with
level crossings, are discussed. Magnetization data on powders of TMMC diluted
with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured
at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from
pairs is used to determine the NN exchange constant, J, which changes from -5.9
K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained
in the superconducting magnets are compared with simulations based on the
equilibrium theory. Data for the differential susceptibility, dM/dB, were taken
in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples
in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more
severe as x decreased, were observed. The non-equilibrium effects are
tentatively interpreted using the "Inadequate Heat Flow Scenario," or to
cross-relaxation, and crossings of energy levels, including those of excited
states.Comment: 16 pages, 14 figure
Spin-Peierls and Antiferromagnetic Phases in Cu{1-x}Zn{x}GeO{3}: A Neutron Scattering Study
Comprehensive neutron scattering studies were carried out on a series of
high-quality single crystals of Cu_{1-x}Zn_xGeO_3. The Zn concentration, x, was
determined for each sample using Electron Probe Micro-Analysis. The measured Zn
concentrations were found to be 40-80% lower than the nominal values.
Nevertheless the measured concentrations cover a wide range which enables a
systematic study of the effects due to Zn-doping. We have confirmed the
coexistence of spin-Peierls (SP) and antiferromagnetic (AF) orderings at low
temperatures and the measured phase diagram is presented. Most surprisingly,
long-range AF ordering occurs even in the lowest available Zn concentration,
x=0.42%, which places important constraints on theoretical models of the AF-SP
coexistence. Magnetic excitations are also examined in detail. The AF
excitations are sharp at low energies and show no considerable broadening as x
increases indicating that the AF ordering remains long ranged for x up to 4.7%.
On the other hand, the SP phase exhibits increasing disorder as x increases, as
shown from the broadening of the SP excitations as well as the dimer reflection
peaks.Comment: 17 preprint style pages, 9 postscript files included. Submitted to
Phys. Rev. B. Also available from
http://insti.physics.sunysb.edu/~mmartin/pubs.htm
A Study of the S=1/2 Alternating Chain using Multiprecision Methods
In this paper we present results for the ground state and low-lying
excitations of the alternating Heisenberg antiferromagnetic chain. Our
more conventional techniques include perturbation theory about the dimer limit
and numerical diagonalization of systems of up to 28 spins. A novel application
of multiple precision numerical diagonalization allows us to determine
analytical perturbation series to high order; the results found using this
approach include ninth-order perturbation series for the ground state energy
and one magnon gap, which were previously known only to third order. We also
give the fifth-order dispersion relation and third-order exclusive neutron
scattering structure factor for one-magnon modes and numerical and analytical
binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs
available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm
- …
