20 research outputs found

    Effects of Hydroxylated Polybrominated Diphenyl Ethers in Developing Zebrafish Are Indicative of Disruption of Oxidative Phosphorylation

    No full text
    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been detected in humans and wildlife. Using in vitro models, we recently showed that OH-PBDEs disrupt oxidative phosphorylation (OXPHOS), an essential process in energy metabolism. The goal of the current study was to determine the in vivo effects of OH-PBDE reported in marine wildlife. To this end, we exposed zebrafish larvae to 17 OH-PBDEs from fertilisation to 6 days of age, and determined developmental toxicity as well as OXPHOS disruption potential with a newly developed assay of oxygen consumption in living embryos. We show here that all OH-PBDEs tested, both individually and as mixtures, resulted in a concentration-dependant delay in development in zebrafish embryos. The most potent substances were 6-OH-BDE47 and 6'-OH-BDE49 (No-Effect-Concentration: 0.1 and 0.05 µM). The first 24 h of development were the most sensitive, resulting in significant and irreversible developmental delay. All substances increased oxygen consumption, an effect indicative of OXPHOS disruption. Our results suggest that the induced developmental delay may be caused by disruption of OXPHOS. Though further studies are needed, our findings suggest that the environmental concentrations of some OH-PBDEs found in Baltic Sea wildlife in the Baltic Sea may be of toxicological concern

    Effects of Hydroxylated Polybrominated Diphenyl Ethers in Developing Zebrafish Are Indicative of Disruption of Oxidative Phosphorylation

    No full text
    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been detected in humans and wildlife. Using in vitro models, we recently showed that OH-PBDEs disrupt oxidative phosphorylation (OXPHOS), an essential process in energy metabolism. The goal of the current study was to determine the in vivo effects of OH-PBDE reported in marine wildlife. To this end, we exposed zebrafish larvae to 17 OH-PBDEs from fertilisation to 6 days of age, and determined developmental toxicity as well as OXPHOS disruption potential with a newly developed assay of oxygen consumption in living embryos. We show here that all OH-PBDEs tested, both individually and as mixtures, resulted in a concentration-dependant delay in development in zebrafish embryos. The most potent substances were 6-OH-BDE47 and 6′-OH-BDE49 (No-Effect-Concentration: 0.1 and 0.05 µM). The first 24 h of development were the most sensitive, resulting in significant and irreversible developmental delay. All substances increased oxygen consumption, an effect indicative of OXPHOS disruption. Our results suggest that the induced developmental delay may be caused by disruption of OXPHOS. Though further studies are needed, our findings suggest that the environmental concentrations of some OH-PBDEs found in Baltic Sea wildlife in the Baltic Sea may be of toxicological concern

    Comparability of behavioural assays using zebrafish larvae to assess neurotoxicity

    No full text
    Testing of compounds for neurotoxicity has become increasingly important in recent years. It has been shown that neurological disorders like autism may be related to chemical exposures, which may play a crucial role in the progression of these diseases. Special attention has been be given to the substances causing developmental neurotoxicity as the developing nervous system is more vulnerable to impacts by chemicals than the adult nervous system. The zebrafish (Danio rerio) is a well-established model species in developmental biology and an emerging model in behavioural and neurological studies. Zebrafish larvae display numerous behavioural patterns highly similar to rodents and humans. Their physical characteristics make them well suited for automated high-throughput screening. In the last years, the number of behavioural studies conducted with zebrafish larvae has increased notably. The goal of this review is to provide an overview of behavioural assays commonly used to test substances for developmental neurotoxicity. Literature from 1995 to 2014 was reviewed and focussed on assays performed with zebrafish larvae younger than 7 days post fertilization (dpf). The behavioural tests were scrutinized, and parameters describing the different experimental setups were defined. In the next step, we investigated if differences in the experimental parameters alter the outcome of the test. In order to test the comparability of behavioural assays, we analysed several studies using ethanol, valproate and pentylenetetrazole as model substances. Based on our findings, we provide recommendations which could help improve future behavioural studies performed with zebrafish larvae

    Anthropogenic and naturally produced brominated substances in Baltic herring (Clupea harengus membras) from two sites in the Baltic Sea

    No full text
    In the eutrophicated Baltic Sea, several naturally produced hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been found in marine biota. OH-PBDEs are toxic to adult and developing zebrafish and shown to be potent disruptors of oxidative phosphorylation (OXPHOS). Disturbed OXPHOS can result in altered energy metabolism and weight loss. In herring, the concentration of OH-PBDEs (i.e. 2'-OH-BDE68 and 6-OH-BDE47) has increased during the period 1980-2010 in the Baltic Proper. Over the same time period, the condition and fat content in Baltic herring have decreased. Given the toxicity and increasing trends of OH-PBDEs in Baltic herring it is important to further assess the exposure to OH-PBDEs in Baltic herring. In this study, the concentrations of OH-PBDEs and related brominated substances i.e. polybrominated phenols (PBPs), polybrominated anisoles (PBAs), methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and polybrominated diphenyl ethers (PBDEs) were measured in herring sampled in the northern Baltic Proper (Askö, n = 12) and the southern Bothnian Sea (Ängskärsklubb, n = 12). The geometric mean (GM) concentrations (ng/g l.w.) at Askö and Ängskärsklubb were;

    Bringing obesity to light: Rev-erbα, a central player in light-induced adipogenesis in the zebrafish?

    No full text
    Background:Recent studies have led to an expansion of potential factors capable of stimulating obesity. Increasing evidence indicates that environmental factors, including disturbance of circadian rhythms, also contribute to its etiology.Objectives:To determine the effects of altered circadian rhythms on adipogenesis and to better understand how circadian and adipogenic regulatory pathways are linked, zebrafish larvae were exposed to various light/dark cycles or hypercaloric feeding (HCF).Methods:Clock and adipogenic gene expression was quantitative real time PCR. Adipogenesis was characterized using coherent anti-Stokes Raman scattering microscopy (CARS) and whole-mount lipid composition was analyzed by gas chromatography. The clock protein Rev-erbα and the adipogenesis-regulating protein Pparγ were localized by immunohistochemistry.Results:Zebrafish larvae exposed to continuous light (LL) had a sevenfold higher prevalence of adipocytes compared with control fish under a 14 h light and 10 h dark cycle. It was also significantly higher compared with that in HCF larvae with control light/dark cycle, which showed a 5.5-fold increase compared with control animals. Although total fatty acid content was unaffected, adipocyte lipid composition was altered in LL zebrafish. In contrast, shifting the onset and duration of the light periods did not affect adipogenesis or total fatty acid content. Gene expression analysis revealed effects of LL and HCF on circadian cyclicity, with increased expression of the clock gene period2 and altered circadian rev-erbα expression in LL larvae. Immunostaining revealed for the first time that Rev-erbα and Pparγ colocalize in adipocytes, which together with the gene expression analysis suggests interplay between Rev-erbα and Ppar isoforms.Conclusions:The amount of light, but not shifted light/dark cycles, affected adipogenesis and lipid composition, possibly due to increased period2 expression, which, in turn, enhances Rev-erbα-regulated gene expression. As the pparβδ promoter includes three Rev-erbα binding sites, we hypothesize that pparβδ may be a direct target that ultimately activates Pparγ

    Toxicology Letters

    No full text
    Disruption of mitochondrial oxidative phosphorylation (OXPHOS) is amechanism of toxicity which disturbs mitochondrial respiration and thereby alters the energy metabolism [1]. This may lead to severe health effects, such as reproductive insufficiency and wasting syndrome [2]. Disruption of OXPHOS is generally studied in vitro using isolated mitochondrial membranes or in whole organisms using tissue extracts [3]. The goal of this study was to develop a method to measure OXPHOS disruption in vivo in a living organism. For this purpose we used zebrafish embryos. We established a method of monitoring mitochondrial respiration using a combination of three in vivo measurements: total oxygen consumption, lactate acid production and mitochondrial membrane potential in zebrafish during early development (0–7 days). We studied the effects of short term and long term exposures to model OXPHOS disruptors like FCCP (Carbonyl cyanide-ptrifluoromethoxyphenylhydrazone), KCN (potassium cyanide) and DNP (2,4-dinitrophenol). We also monitored dose–response relationships over time and compared our results with a standard in vitro method. Our results indicate that disruption of OXPHOS can be measured in vivo in the zebrafish embryo. Exposure to model compounds showed clear differences between uncouplers and inhibitors, as well as differences in sensitivity to OXPHOS disruption during development. The relative potency of the used compounds was similar between the in vivo and in vitro measurements. Changes in the mitochondrial respiration were also seen after a chronic exposure with a relatively low dose of disruptor

    Determination of monoamine neurotransmitters in zebrafish (Danio rerio) by gas chromatography coupled to mass spectrometry with a two-step derivatization

    No full text
    A sensitive analytical method for the determination of monoamine neurotransmitters (MNTs) in zebrafish larvae was developed using gas chromatography coupled to mass spectrometry. Six MNTs were selected as target compounds for neurotoxicity testing. MNTs underwent a two-step derivatization with hexamethyldisilazane (HDMS) for O-silylation followed by N-methyl-bis-heptafluorobutyramide (MBHFBA) for N-perfluoroacylation. Derivatization conditions were optimized by an experimental design approach. Method validation showed linear calibration curves (r 2 > 0.9976) in the range of 1–100 ng for all the compounds. The recovery rates were between 92 and 119%. The method was repeatable and reproducible with relative standard deviations (RSD) in the range of 2.5–9.3% for intra-day and 4.8–12% for inter-day variation. The limits of detection and the limits of quantitation were 0.4–0.8 and 1.2–2.7 ng/mL, respectively. The method was successfully applied to detect and quantify trace levels of MNTs in 5-day-old zebrafish larvae that were exposed to low concentrations of neurotoxic chemicals such as pesticides and methylmercury. Although visual malformations were not detected, the MNT levels varied significantly during early zebrafish development. These results show that exposure to neurotoxic chemicals can alter neurotransmitter levels and thereby may influence early brain development
    corecore