102 research outputs found

    Does accelerating universe indicates Brans-Dicke theory

    Full text link
    The evolution of universe in Brans-Dicke (BD) theory is discussed in this paper. Considering a parameterized scenario for BD scalar field ϕ=ϕ0aα\phi=\phi_{0}a^{\alpha} which plays the role of gravitational "constant" GG, we apply the Markov Chain Monte Carlo method to investigate a global constraints on BD theory with a self-interacting potential according to the current observational data: Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. It is shown that an expanded universe from deceleration to acceleration is given in this theory, and the constraint results of dimensionless matter density Ω0m\Omega_{0m} and parameter α\alpha are, Ω0m=0.2860.0390.047+0.037+0.050\Omega_{0m}=0.286^{+0.037+0.050}_{-0.039-0.047} and α=0.00460.01710.0206+0.0149+0.0171\alpha=0.0046^{+0.0149+0.0171}_{-0.0171-0.0206} which is consistent with the result of current experiment exploration, α0.132124\mid\alpha\mid \leq 0.132124. In addition, we use the geometrical diagnostic method, jerk parameter jj, to distinguish the BD theory and cosmological constant model in Einstein's theory of general relativity.Comment: 16 pages, 3 figure

    Charge conservation and time-varying speed of light

    Get PDF
    It has been recently claimed that cosmologies with time dependent speed of light might solve some of the problems of the standard cosmological scenario, as well as inflationary scenarios. In this letter we show that most of these models, when analyzed in a consistent way, lead to large violations of charge conservation. Thus, they are severly constrained by experiment, including those where cc is a power of the scale factor and those whose source term is the trace of the energy-momentum tensor. In addition, early Universe scenarios with a sudden change of cc related to baryogenesis are discarded.Comment: 4 page

    Generalized second law of thermodynamics in f(T) gravity

    Full text link
    We investigate the validity of the generalized second law (GSL) of gravitational thermodynamics in the framework of f(T) modified teleparallel gravity. We consider a spatially flat FRW universe containing only the pressureless matter. The boundary of the universe is assumed to be enclosed by the Hubble horizon. For two viable f(T) models containing f(T)=T+μ1(T)nf(T)=T+\mu_1{(-T)}^n and f(T)=Tμ2T(1eβT0T)f(T)=T-\mu_2 T(1-e^{\beta\frac{T_0}{T}}), we first calculate the effective equation of state and deceleration parameters. Then, we investigate the null and strong energy conditions and conclude that a sudden future singularity appears in both models. Furthermore, using a cosmographic analysis we check the viability of two models. Finally, we examine the validity of the GSL and find that for both models it is satisfied from the early times to the present epoch. But in the future, the GSL is violated for the special ranges of the torsion scalar T.Comment: 16 pages, 10 figures, accepted by JCAP 201

    The universe formation by a space reduction cascade with random initial parameters

    Full text link
    In this paper we discuss the creation of our universe using the idea of extra dimensions. The initial, multidimensional Lagrangian contains only metric tensor. We have found many sets of the numerical values of the Lagrangian parameters corresponding to the observed low-energy physics of our universe. Different initial parameters can lead to the same values of fundamental constants by the appropriate choice of a dimensional reduction cascade. This result diminishes the significance of the search for the 'unique' initial Lagrangian. We also have obtained a large number of low-energy vacua, which is known as a 'landscape' in the string theory.Comment: 17 pages, 1 figur

    Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach

    Full text link
    We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Ωbh2=0.022630.00162+0.00184\Omega_{b}h^{2}=0.02263^{+0.00184}_{-0.00162} (1σ1\sigma) 0.00195+0.00213^{+0.00213}_{-0.00195} (2σ)(2\sigma), Bs=0.77880.0723+0.0736B_{s}=0.7788^{+0.0736}_{-0.0723} (1σ1\sigma) 0.0904+0.0918^{+0.0918}_{-0.0904} (2σ)(2\sigma), α=0.10790.2539+0.3397\alpha=0.1079^{+0.3397}_{-0.2539} (1σ1\sigma) 0.2911+0.4678^{+0.4678}_{-0.2911} (2σ)(2\sigma), B=0.001890.00756+0.00583B=0.00189^{+0.00583}_{-0.00756} (1σ1\sigma) 0.00915+0.00660^{+0.00660}_{-0.00915} (2σ)(2\sigma), and H0=70.7113.142+4.188H_{0}=70.711^{+4.188}_{-3.142} (1σ1\sigma) 4.149+5.281^{+5.281}_{-4.149} (2σ)(2\sigma).Comment: 12 pages, 1figur

    On the variation of the gauge couplings during inflation

    Get PDF
    It is shown that the evolution of the (Abelian) gauge coupling during an inflationary phase of de Sitter type drives the growth of the two-point function of the magnetic inhomogeneities. After examining the constraints on the variation of the gauge coupling arising in a standard model of inflationary and post-inflationary evolution, magnetohydrodynamical equations are generalized to the case of time evolving gauge coupling. It is argued that large scale magnetic fields can be copiously generated. Other possible implications of the model are outlined.Comment: 5 pages in RevTex style, one figur

    T-Duality and Penrose limits of spatially homogeneous and inhomogeneous cosmologies

    Get PDF
    Penrose limits of inhomogeneous cosmologies admitting two abelian Killing vectors and their abelian T-duals are found in general. The wave profiles of the resulting plane waves are given for particular solutions. Abelian and non-abelian T-duality are used as solution generating techniques. Furthermore, it is found that unlike in the case of abelian T-duality, non-abelian T-duality and taking the Penrose limit are not commutative procedures.Comment: 16 pages, 4 figures. Discussion on non-abelian T-duality expande

    An Infrared Divergence Problem in the cosmological measure theory and the anthropic reasoning

    Full text link
    An anthropic principle has made it possible to answer the difficult question of why the observable value of cosmological constant (Λ1047\Lambda\sim 10^{-47} GeV4{}^4) is so disconcertingly tiny compared to predicted value of vacuum energy density ρSUSY1012\rho_{SUSY}\sim 10^{12} GeV4{}^4. Unfortunately, there is a darker side to this argument, as it consequently leads to another absurd prediction: that the probability to observe the value Λ=0\Lambda=0 for randomly selected observer exactly equals to 1. We'll call this controversy an infrared divergence problem. It is shown that the IRD prediction can be avoided with the help of a Linde-Vanchurin {\em singular runaway measure} coupled with the calculation of relative Bayesian probabilities by the means of the {\em doomsday argument}. Moreover, it is shown that while the IRD problem occurs for the {\em prediction stage} of value of Λ\Lambda, it disappears at the {\em explanatory stage} when Λ\Lambda has already been measured by the observer.Comment: 9 pages, RevTe

    Search for varying constants of nature from astronomical observation of molecules

    Full text link
    The status of searches for possible variation in the constants of nature from astronomical observation of molecules is reviewed, focusing on the dimensionless constant representing the proton-electron mass ratio μ=mp/me\mu=m_p/m_e. The optical detection of H2_2 and CO molecules with large ground-based telescopes (as the ESO-VLT and the Keck telescopes), as well as the detection of H2_2 with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope is discussed in the context of varying constants, and in connection to different theoretical scenarios. Radio astronomy provides an alternative search strategy bearing the advantage that molecules as NH3_3 (ammonia) and CH3_3OH (methanol) can be used, which are much more sensitive to a varying μ\mu than diatomic molecules. Current constraints are Δμ/μ<5×106|\Delta\mu/\mu| < 5 \times 10^{-6} for redshift z=2.04.2z=2.0-4.2, corresponding to look-back times of 10-12.5 Gyrs, and Δμ/μ<1.5×107|\Delta\mu/\mu| < 1.5 \times 10^{-7} for z=0.88z=0.88, corresponding to half the age of the Universe (both at 3σ\sigma statistical significance). Existing bottlenecks and prospects for future improvement with novel instrumentation are discussed.Comment: Contribution to Workshop "High Performance Clocks in Space" at the International Space Science Institute, Bern 201

    STATIONARY SOLUTIONS IN BRANS-DICKE STOCHASTIC INFLATIONARY COSMOLOGY

    Get PDF
    In Brans-Dicke theory the Universe becomes divided after inflation into many exponentially large domains with different values of the effective gravitational constant. Such a process can be described by diffusion equations for the probability of finding a certain value of the inflaton and dilaton fields in a physical volume of the Universe. For a typical chaotic inflation potential, the solutions for the probability distribution never become stationary but grow forever towards larger values of the fields. We show here that a non-minimal conformal coupling of the inflaton to the curvature scalar, as well as radiative corrections to the effective potential, may provide a dynamical cutoff and generate stationary solutions. We also analyze the possibility of large nonperturbative jumps of the fluctuating inflaton scalar field, which was recently revealed in the context of the Einstein theory. We find that in the Brans--Dicke theory the amplitude of such jumps is strongly suppressed.Comment: 19 pages, LaTe
    corecore