47 research outputs found

    Cosmological and astrophysical limits on brane fluctuations

    Get PDF
    We consider a general brane-world model parametrized by the brane tension scale ff and the branon mass MM. For low tension compared to the fundamental gravitational scale, we calculate the relic branon abundance and its contribution to the cosmological dark matter. We compare this result with the current observational limits on the total and hot dark matter energy densities and derive the corresponding bounds on ff and MM. Using the nucleosynthesis bounds on the number of relativistic species, we also set a limit on the number of light branons in terms of the brane tension. Finally, we estimate the bounds coming from the energy loss rate in supernovae explosions due to massive branon emission.Comment: 26 pages, 6 figures, LaTeX. Final version with minor corrections. To appear in Phys. Rev.

    Focusing of geodesic congruences in an accelerated expanding Universe

    Get PDF
    We study the accelerated expansion of the Universe through its consequences on a congruence of geodesics. We make use of the Raychaudhuri equation which describes the evolution of the expansion rate for a congruence of timelike or null geodesics. In particular, we focus on the space-time geometry contribution to this equation. By straightforward calculation from the metric of a Robertson-Walker cosmological model, it follows that in an accelerated expanding Universe the space-time contribution to the Raychaudhuri equation is positive for the fundamental congruence, favoring a non-focusing of the congruence of geodesics. However, the accelerated expansion of the present Universe does not imply a tendency of the fundamental congruence to diverge. It is shown that this is in fact the case for certain congruences of timelike geodesics without vorticity. Therefore, the focusing of geodesics remains feasible in an accelerated expanding Universe. Furthermore, a negative contribution to the Raychaudhuri equation from space-time geometry which is usually interpreted as the manifestation of the attractive character of gravity is restored in an accelerated expanding Robertson-Walker space-time at high speeds.Comment: 11 pages, 2 figures. Final version changed to match published version in JCAP. References updated. Conclusions unchange

    Brane oscillations and the cosmic coincidence problem

    Get PDF
    We show that, under general assumptions, in six-dimensional brane-world models with compactified large extra dimensions, the energy density of brane oscillations scales as that of cold dark matter and its present value is compatible with observations. Such value is obtained from the only dimensional scale in the theory, namely, the fundamental scale of gravity in six dimensions M61M_6\sim 1 TeV, without any fine-tuning or the introduction of additional mass scales apart from the large size of the extra dimensions. It has been suggested that the same kind of models could provide also the correct magnitude of the cosmological constant. This observation can be relevant for the resolution of the cosmic coincidence problem in the brane-world scenario.Comment: 5 pages, RevTeX. Comments on the renormalization of the branon mass included. Final version to appear in Phys.Rev.D (R

    Bound states between dark matter particles and emission of gravitational radiation

    Full text link
    Bound states of two weakly interactive massive particles are studied. It is assumed that the WIMPonium is formed due to the gravitational interaction, since the weak interaction can sometimes be repulsive. The lifetimes of the spontaneous emission of gravitational radiation and of the WIMPs annihilation into a pair of gravitons are computed, and are shown to be many orders of magnitude larger than the age of the universe.Comment: Accepted for publication in GER

    A Theory of a Spot

    Full text link
    We present a simple inflationary scenario that can produce arbitrarily large spherical underdense or overdense regions embedded in a standard Lambda cold dark matter paradigm, which we refer to as bubbles. We analyze the effect such bubbles would have on the Cosmic Microwave Background (CMB). For super-horizon sized bubble in the vicinity of the last scattering surface, a signal is imprinted onto CMB via a combination of Sach-Wolfe and an early integrated Sach-Wolfe (ISW) effects. Smaller, sub-horizon sized bubbles at lower redshifts (during matter domination and later) can imprint secondary anisotropies on the CMB via Rees-Sciama, late-time ISW and Ostriker-Vishniac effects. Our scenario, and arguably most similar inflationary models, produce bubbles which are over/underdense in potential: in density such bubbles are characterized by having a distinct wall with the interior staying at the cosmic mean density. We show that such models can potentially, with only moderate fine tuning, explain the \emph{cold spot}, a non-Gaussian feature identified in the Wilkinson Microwave Anisotropy Probe (WMAP) data by several authors. However, more detailed comparisons with current and future CMB data are necessary to confirm (or rule out) this scenario.Comment: 19 pages, 19 figures, added references and explanations, JCAP in pres

    On the non-attractive character of gravity in f(R) theories

    Get PDF
    Raychaudhuri equation is found provided that particular energy conditions are assumed and regardless the considered solution of the Einstein's equations. This fact is usually interpreted as a manifestation of the attractive character of gravity. Nevertheless, a positive contribution to Raychaudhuri equation from space-time geometry should occur since this is the case in an accelerated expanding Robertson-Walker model for congruences followed by fundamental observers. Modified gravity theories provide the possibility of a positive contribution although the standard energy conditions are assumed. We address this important issue in the context of f(R) theories, deriving explicit upper bounds for the contribution of space-time geometry to the Raychaudhuri equation. Then, we examine the parameter constraints for some paradigmatic f(R) models in order to ensure a positive contribution to this equation. Furthermore, we consider the implications of these upper bounds in the equivalent formulation of f(R) theories as a Brans-Dicke model

    Modified f(R) gravity from scalar-tensor theory and inhomogeneous EoS dark energy

    Full text link
    The reconstruction of f(R)-gravity is showed by using an auxiliary scalar field in the context of cosmological evolution, this development provide a way of reconstruct the form of the function f (R) for a given evolution of the Hubble parameter. In analogy, f(R)-gravity may be expressed by a perfect fluid with an inhomogeneous equation of state that depends on the Hubble parameter and its derivatives. This mathematical equivalence that may confuse about the origin of the mechanism that produces the current acceleration, and possibly the whole evolution of the Hubble parameter, is shown here.Comment: 8 page

    Report of the 2005 Snowmass Top/QCD Working Group

    Get PDF
    This report discusses several topics in both top quark physics and QCD at an International Linear Collider (ILC). Issues such as measurements at the ttˉt\bar{t} threshold, including both theoretical and machine requirements, and the determination of electroweak top quark couplings, are reviewed. New results concerning the potential of a 500 GeV e+ee^+e^- collider for measuring WtbWtb couplings and the top quark Yukawa coupling are presented. The status of higher order QCD corrections to jet production cross sections, heavy quark form factors, and longitudinal gauge boson scattering, needed for percent-level studies at the ILC, are reviewed. A new study of the measurement of the hadronic structure of the photon at a γγ\gamma\gamma collider is presented. The effects on top quark properties from several models of new physics, including composite models, Little Higgs theories, and CPT violation, are studied.Comment: 39 pages, many figs; typos fixed and refs added. Contributed to the 2005 International Linear Collider Physics and Detector Workshop and 2nd ILC Accelerator Workshop, Snowmass, Colorado, 14-27 Aug 200
    corecore