244 research outputs found
Specifying Reusable Components
Reusable software components need expressive specifications. This paper
outlines a rigorous foundation to model-based contracts, a method to equip
classes with strong contracts that support accurate design, implementation, and
formal verification of reusable components. Model-based contracts
conservatively extend the classic Design by Contract with a notion of model,
which underpins the precise definitions of such concepts as abstract
equivalence and specification completeness. Experiments applying model-based
contracts to libraries of data structures suggest that the method enables
accurate specification of practical software
A Model for Neutrino Masses and Dark Matter
We propose a model for neutrino masses that simultaneously results in a new
dark matter candidate, the right-handed neutrino. We derive the dark matter
abundance in this model, show how the hierarchy of neutrino masses is obtained,
and verify that the model is compatible with existing experimental results. The
model provides an economical method of unifying two seemingly separate puzzles
in contemporary particle physics and cosmology.Comment: 4 pages, submitted to PR
Lepton Flavor Violating Process in Bi-maximal texture of Neutrino Mixings
We investigate the lepton flavor violation in the framework of the MSSM with
right-handed neutrinos taking the large mixing angle MSW solution in the
quasi-degenerate and the inverse-hierarchical neutrino masses. We predict the
branching ratio of and processes
assuming the degenerate right-handed Majorana neutrino masses. We find that the
branching ratio in the quasi-degenerate neutrino mass spectrum is 100 times
smaller than the ones in the inverse-hierarchical and the hierarchical neutrino
spectra. We emphasize that the magnitude of is one of important
ingredients to predict BR(). The effect of the deviation
from the complete-degenerate right-handed Majorana neutrino masses are also
estimated. Furtheremore, we examine the S_{3\sL}\times S_{3\sR} model, which
gives the quasi-degenerate neutrino masses, and the Shafi-Tavartkiladze model,
which gives the inverse-hierarchical neutrino masses. Both predicted branching
ratios of are smaller than the experimantal bound.Comment: Latex file, 38 pages, 10 figures, revised versio
Demographic changes in Pleistocene sea turtles were driven by past sea level fluctuations affecting feeding habitat availability
Pleistocene environmental changes are generally assumed to have dramatically affected species’ demography via changes in habitat availability, but this is challenging to investigate due to our limited knowledge of how Pleistocene ecosystems changed through time. Here, we tracked changes in shallow marine habitat availability resulting from Pleistocene sea level fluctuations throughout the last glacial cycle (120–14 thousand years ago; kya) and assessed correlations with past changes in genetic diversity inferred from genome-wide SNPs, obtained via ddRAD sequencing, in Caribbean hawksbill turtles, which feed in coral reefs commonly found in shallow tropical waters. We found sea level regression resulted in an average 75% reduction in shallow marine habitat availability during the last glacial cycle. Changes in shallow marine habitat availability correlated strongly with past changes in hawksbill turtle genetic diversity, which gradually declined to ~1/4th of present-day levels during the Last Glacial Maximum (LGM; 26–19 kya). Shallow marine habitat availability and genetic diversity rapidly increased after the LGM, signifying a population expansion in response to warming environmental conditions. Our results suggest a positive correlation between Pleistocene environmental changes, habitat availability and species’ demography, and that demographic changes in hawksbill turtles were potentially driven by feeding habitat availability. However, we also identified challenges associated with disentangling the potential environmental drivers of past demographic changes, which highlights the need for integrative approaches. Our conclusions underline the role of habitat availability on species’ demography and biodiversity, and that the consequences of ongoing habitat loss should not be underestimated
Friedmann Equation and Stability of Inflationary Higher Derivative Gravity
Stability analysis on the De Sitter universe in pure gravity theory is known
to be useful in many aspects. We first show how to complete the proof of an
earlier argument based on a redundant field equation. It is shown further that
the stability condition applies to Friedmann-Robertson-Walker spaces
based on the non-redundant Friedmann equation derived from a simple effective
Lagrangian. We show how to derive this expression for the Friedmann equation of
pure gravity theory. This expression is also generalized to include scalar
field interactions.Comment: Revtex, 6 pages, Add two more references, some typos correcte
Duality for symmetric second rank tensors. II. The linearized gravitational field
The construction of dual theories for linearized gravity in four dimensions
is considered. Our approach is based on the parent Lagrangian method previously
developed for the massive spin-two case, but now considered for the zero mass
case. This leads to a dual theory described in terms of a rank two symmetric
tensor, analogous to the usual gravitational field, and an auxiliary
antisymmetric field. This theory has an enlarged gauge symmetry, but with an
adequate partial gauge fixing it can be reduced to a gauge symmetry similar to
the standard one of linearized gravitation. We present examples illustrating
the general procedure and the physical interpretation of the dual fields. The
zero mass case of the massive theory dual to the massive spin-two theory is
also examined, but we show that it only contains a spin-zero excitation.Comment: 20 pages, no figure
Postponement of the Newborn Hearing Screening during the COVID-19 Pandemic; Parental Experiences and Worries
Early identification of hearing loss through newborn hearing screening followed by an early start of intervention has proven to be effective in promoting speech and language development in children with hearing loss. During the COVID-19 pandemic, newborn hearing screening was postponed for a group of newborns in the Netherlands. Therefore, meeting the guidelines for early identification was at risk. In this study, we examine parental attitudes, beliefs, and experiences concerning the hearing screening during the COVID-19 pandemic. Our results indicated that parents (n = 1053) were very positive about newborn hearing screening and their experiences with the screening, even during the COVID-19 pandemic. Parents’ beliefs on the information provision around newborn hearing screening were more inconsistent. The results showed that parents with a postponed hearing screening felt less informed about the hearing screening than parents without a postponed screening. Furthermore, child and family characteristics affected how parents experienced newborn hearing screening. Parents with a premature child were more worried about the hearing abilities of their child before the screening took place. The results also indicate that deafness in the family might lead to parental worries around newborn hearing screening
Identification of quiescent, stem-like cells in the distal female reproductive tract
In fertile women, the endometrium undergoes regular cycles of tissue build-up and regression. It is likely that uterine stem cells are involved in this remarkable turn over. The main goal of our current investigations was to identify slow-cycling (quiescent) endometrial stem cells by means of a pulse-chase approach to selectively earmark, prospectively isolate, and characterize label-retaining cells (LRCs). To this aim, transgenic mice expressing histone2B-GFP (H2B-GFP) in a Tet-inducible fashion were administered doxycycline (pulse) which was thereafter withdrawn from the drinking water (chase). Over time, dividing cells progressively loose GFP signal whereas infrequently dividing cells retain H2B-GFP expression. We evaluated H2B-GFP retaining cells at different chase time points and identified long-term (LT; >12 weeks) LRCs. The LT-LRCs are negative for estrogen receptor-α and express low levels of progesterone receptors. LRCs sorted by FACS are able to form spheroids capable of self-renewal and differentiation. Upon serum stimulation spheroid cells are in
- …