7 research outputs found
Non-uniqueness results for critical metrics of regularized determinants in four dimensions
The regularized determinant of the Paneitz operator arises in quantum gravity [see Connes in (Noncommutative geometry, 1994), IV.4.γ]. An explicit formula for the relative determinant of two conformally related metrics was computed by Branson in (Commun Math Phys 178:301–309, 1996). A similar formula holds for Cheeger’s half-torsion, which plays a role in self-dual field theory [see Juhl in (Families of conformally covariant differential operators, q-curvature and holography. Progress in Mathematics, vol 275, 2009)], and is defined in terms of regularized determinants of the Hodge laplacian on p-forms (p < n/2). In this article we show that the corresponding actions are unbounded (above and below) on any conformal four-manifold. We also show that the conformal class of the round sphere admits a second solution which is not given by the pull-back of the round metric by a conformal map, thus violating uniqueness up to gauge equivalence