8 research outputs found

    Asymptotic simplicity and static data

    Full text link
    The present article considers time symmetric initial data sets for the vacuum Einstein field equations which in a neighbourhood of infinity have the same massless part as that of some static initial data set. It is shown that the solutions to the regular finite initial value problem at spatial infinity for this class of initial data sets extend smoothly through the critical sets where null infinity touches spatial infinity if and only if the initial data sets coincide with static data in a neighbourhood of infinity. This result highlights the special role played by static data among the class of initial data sets for the Einstein field equations whose development gives rise to a spacetime with a smooth conformal compactification at null infinity.Comment: 25 page

    A rigidity property of asymptotically simple spacetimes arising from conformally flat data

    Full text link
    Given a time symmetric initial data set for the vacuum Einstein field equations which is conformally flat near infinity, it is shown that the solutions to the regular finite initial value problem at spatial infinity extend smoothly through the critical sets where null infinity touches spatial infinity if and only if the initial data coincides with Schwarzschild data near infinity.Comment: 37 page

    Conformal structures of static vacuum data

    Full text link
    In the Cauchy problem for asymptotically flat vacuum data the solution-jets along the cylinder at space-like infinity develop in general logarithmic singularities at the critical sets at which the cylinder touches future/past null infinity. The tendency of these singularities to spread along the null generators of null infinity obstructs the development of a smooth conformal structure at null infinity. For the solution-jets arising from time reflection symmetric data to extend smoothly to the critical sets it is necessary that the Cotton tensor of the initial three-metric h satisfies a certain conformally invariant condition (*) at space-like infinity, it is sufficient that h be asymptotically static at space-like infinity. The purpose of this article is to characterize the gap between these conditions. We show that with the class of metrics which satisfy condition (*) on the Cotton tensor and a certain non-degeneracy requirement is associated a one-form κ\kappa with conformally invariant differential dκd\kappa. We provide two criteria: If hh is real analytic, κ\kappa is closed, and one of it integrals satisfies a certain equation then h is conformal to static data near space-like infinity. If h is smooth, κ\kappa is asymptotically closed, and one of it integrals satisfies a certain equation asymptotically then h is asymptotically conformal to static data at space-like infinity.Comment: 68 pages, typos corrected, references and details adde

    On the construction of a geometric invariant measuring the deviation from Kerr data

    Full text link
    This article contains a detailed and rigorous proof of the construction of a geometric invariant for initial data sets for the Einstein vacuum field equations. This geometric invariant vanishes if and only if the initial data set corresponds to data for the Kerr spacetime, and thus, it characterises this type of data. The construction presented is valid for boosted and non-boosted initial data sets which are, in a sense, asymptotically Schwarzschildean. As a preliminary step to the construction of the geometric invariant, an analysis of a characterisation of the Kerr spacetime in terms of Killing spinors is carried out. A space spinor split of the (spacetime) Killing spinor equation is performed, to obtain a set of three conditions ensuring the existence of a Killing spinor of the development of the initial data set. In order to construct the geometric invariant, we introduce the notion of approximate Killing spinors. These spinors are symmetric valence 2 spinors intrinsic to the initial hypersurface and satisfy a certain second order elliptic equation ---the approximate Killing spinor equation. This equation arises as the Euler-Lagrange equation of a non-negative integral functional. This functional constitutes part of our geometric invariant ---however, the whole functional does not come from a variational principle. The asymptotic behaviour of solutions to the approximate Killing spinor equation is studied and an existence theorem is presented.Comment: 36 pages. Updated references. Technical details correcte

    Bumpy black holes from spontaneous Lorentz violation

    Full text link
    We consider black holes in Lorentz violating theories of massive gravity. We argue that in these theories black hole solutions are no longer universal and exhibit a large number of hairs. If they exist, these hairs probe the singularity inside the black hole providing a window into quantum gravity. The existence of these hairs can be tested by future gravitational wave observatories. We generically expect that the effects we discuss will be larger for the more massive black holes. In the simplest models the strength of the hairs is controlled by the same parameter that sets the mass of the graviton (tensor modes). Then the upper limit on this mass coming from the inferred gravitational radiation emitted by binary pulsars implies that hairs are likely to be suppressed for almost the entire mass range of the super-massive black holes in the centers of galaxies.Comment: 40 pages, 4 figure

    Conformal-thin-sandwich initial data for a single boosted or spinning black hole puncture

    Full text link
    Sequences of initial-data sets representing binary black holes in quasi-circular orbits have been used to calculate what may be interpreted as the innermost stable circular orbit. These sequences have been computed with two approaches. One method is based on the traditional conformal-transverse-traceless decomposition and locates quasi-circular orbits from the turning points in an effective potential. The second method uses a conformal-thin-sandwich decomposition and determines quasi-circular orbits by requiring the existence of an approximate helical Killing vector. Although the parameters defining the innermost stable circular orbit obtained from these two methods differ significantly, both approaches yield approximately the same initial data, as the separation of the binary system increases. To help understanding this agreement between data sets, we consider the case of initial data representing a single boosted or spinning black hole puncture of the Bowen-York type and show that the conformal-transverse-traceless and conformal-thin-sandwich methods yield identical data, both satisfying the conditions for the existence of an approximate Killing vector.Comment: 13 pages, 2 figure

    On conserved quantities, symmetries and radioactive properties of peeling and non-peeling (polyhomogeneous) asymptotically flat spacetimes

    No full text
    Available from British Library Document Supply Centre-DSC:DXN051370 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
    corecore