43 research outputs found
Palpography
Intravascular ultrasound palpography is a new imaging technique that allows visualization of the deformation of atherosclerotic plaques. The technique is based on principle of elastography that the strain as response of tissue to a mechanical force is dependent on its mechanical properties. Several techniques had been investigated (van der Steen 1998) to strain the vessel wall. Leaving the mechanical deformation to the intravascular pressure, which is reproducible, is occurring about sixty times per minute and is for free, seemed to be a reasonable idea
Intravascular palpography for high-risk vulnerable plaque assessment.
Item does not contain fulltextBACKGROUND: The composition of an atherosclerotic plaque is considered more important than the degree of stenosis. An unstable lesion may rupture and cause an acute thrombotic reaction. Most of these lesions contain a large lipid pool covered by an inflamed thin fibrous cap. The stress in the cap increases with decreasing cap thickness and increasing macrophage infiltration. Intravascular ultrasound (IVUS) palpography might be an ideal technique to assess the mechanical properties of high-risk plaques. TECHNIQUE: Palpography assesses the local mechanical properties of tissue using its deformation caused by the intraluminal pressure. IN VITRO VALIDATION: The technique was validated in vitro using diseased human coronary and femoral arteries. Especially between fibrous and fatty tissue, a highly significant difference in strain (p = 0.0012) was found. Additionally, the predictive value to identify the vulnerable plaque was investigated. A high-strain region at the lumen-vessel wall boundary has an 88% sensitivity and 89% specificity for identifying such plaques. IN VIVO VALIDATION: In vivo, the technique was validated in an atherosclerotic Yucatan minipig animal model. This study also revealed higher strain values in fatty than fibrous plaques (p < 0.001). The presence of a high-strain region at the lumenplaque interface has a high predictive value to identify macrophages. PATIENT STUDIES: Patient studies revealed high-strain values (1-2%) in thin-cap fibrous atheroma. Calcified material showed low strain values (0-0.2%). With the development of three-dimensional (3-D) palpography, identification of highstrain spots over the full length of a coronary artery becomes available. CONCLUSION: Intravascular palpography is a unique tool to assess lesion composition and vulnerability. The development of 3-D palpography provides a technique that may develop into a clinical tool to identify the high-risk plaque
Light-like noncommutativity and duality from open strings/branes
In this paper we perform some non-trivial tests for the recently obtained
open membrane/D-brane metrics and `generalized' noncommutativity parameters
using Dp/NS5/M5-branes which have been deformed by light-like fields. The
results obtained give further evidence that these open membrane/D-brane metrics
and `generalized' noncommutativity parameters are correct. Further, we use the
open brane data and supergravity duals to obtain more information about
non-gravitational theories with light-like noncommutativity, or `generalized'
light-like noncommutativity. In particular, we investigate various duality
relations (strong coupling limits). In the light-like case we also comment on
the relation between open membrane data (open membrane metric etc.) in six
dimensions and open string data in five dimensions. Finally, we investigate the
strong coupling limit (high energy limit) of five dimensional NCYM with
\Theta^{12}=\Theta^{34}. In particular, we find that this NCYM theory can be UV
completed by a DLCQ compactification of M-theory.Comment: 24 pages, Latex. v2:Comments and references added. v3:Version
published in JHE
Consistent Treatment of Relativistic Effects in Electrodisintegration of the Deuteron
The influence of relativistic contributions to deuteron electrodisintegration
is systematically studied in various kinematic regions of energy and momentum
transfer. As theoretical framework the equation-of-motion and the unitarily
equivalent S-matrix approaches are used. In a (p/M)-expansion, all leading
order relativistic -exchange contributions consistent with the Bonn OBEPQ
model are included. In addition, static heavy meson exchange currents including
boost terms, -currents, and -isobar contributions
are considered. Sizeable effects from the various relativistic two-body
contributions, mainly from -exchange, have been found in inclusive form
factors and exclusive structure functions for a variety of kinematic regions.Comment: 41 pages revtex including 15 postscript figure
De Sitter and Schwarzschild-De Sitter According to Schwarzschild and De Sitter
When de Sitter first introduced his celebrated spacetime, he claimed,
following Schwarzschild, that its spatial sections have the topology of the
real projective space RP^3 (that is, the topology of the group manifold SO(3))
rather than, as is almost universally assumed today, that of the sphere S^3.
(In modern language, Schwarzschild was disturbed by the non-local correlations
enforced by S^3 geometry.) Thus, what we today call "de Sitter space" would not
have been accepted as such by de Sitter. There is no real basis within
classical cosmology for preferring S^3 to RP^3, but the general feeling appears
to be that the distinction is in any case of little importance. We wish to
argue that, in the light of current concerns about the nature of de Sitter
space, this is a mistake. In particular, we argue that the difference between
"dS(S^3)" and "dS(RP^3)" may be very important in attacking the problem of
understanding horizon entropies. In the approach to de Sitter entropy via
Schwarzschild-de Sitter spacetime, we find that the apparently trivial
difference between RP^3 and S^3 actually leads to very different perspectives
on this major question of quantum cosmology.Comment: 26 pages, 8 figures, typos fixed, references added, equation numbers
finally fixed, JHEP versio
A Diffractive Study of Parametric Process in Nonlinear Photonic Crystals
We report a general description of quasi-phase-matched parametric process in
nonlinear photonic crystals (NLPC) by extending the conventional X-ray
diffraction theory in solids. Under the virtual wave approximation,
phase-matching resonance is equivalent to the diffraction of the scattered
virtual wave. Hence a modified NLPC Ewald construction can be built up, which
illustrates the nature of the accident for the diffraction of the virtual wave
in NLPC and further reveals the complete set of diffractions of the virtual
wave for both of the air-dielectric and dielectric-dielectric contacts. We show
the two basic linear sequences, the anti-stacking and para-stacking linear
sequences, in one-dimension (1D) NLPC and present a general rule for multiple
phase-matching resonances in 1D NLPC. The parameters affecting the NLPC
structure factor are investigated, which indicate that not only the Ewald
construction but also the relative NLPC atom size together determine whether a
diffraction of the virtual wave can occur in 2D NLPC. The results also show
that 1D NLPC is a better choice than 2D NLPC for a single parametric process
Holography, diffeomorphisms, and scaling violations in the CMB
We analyze diffeomorphism invariance in inflationary spacetimes regulated by a boundary at late time. We present the action for quadratic fluctuations in the presence of a boundary, and verify that it is gauge invariant precisely when the correct local counterterms are included. The scaling behavior of bulk correlation functions at the boundary is determined by Callan-Symanzik equations which predict scaling violations in agreement with the standard inflationary predictions for spectral indices of the CMB.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49149/2/jhep072004062.pd
Effect of temperature increase and freezing on intravascular elastography.
Intravascular ultrasound (IVUS) elastography is a technique that assesses the local strain in the vessel wall and plaque. The strain is an important parameter for characterization of different plaque components. These regions are related to plaque vulnerability. IVUS elastography was validated in vitro using human coronary and femoral arteries. These experiments were performed on specimens that were stored frozen and measured at room temperature for practical issues. The aim of this study is to determine the influence of freezing and measuring the tissues at room temperature (23 degrees C instead of 37 degrees C) on the elastic properties. Four human coronary, one carotid and one femoral arteries were first measured at 23 degrees C and next at 37 degrees C. Additionally they were stored at -80 degrees C for up to 24 h and finally measured at 23 degrees C. Acquisitions at intraluminal pressures of 80 and 100 mmHg were performed using an EndoSonics 20 MHz Visions catheter. Elastograms were determined from the IVUS rf-data (sampled at 100 MHz in 12 bits) that were obtained from a digital interface. Qualitative and quantitative analysis of the elastograms obtained from fresh and frozen specimens measured at 23 degrees C reveals that storage of the specimen at -80 degrees C has no significant influence. In vitro experiments can be performed at room temperature after storage of the tissue at -80 degrees C without significant affection of the information with respect to measuring fresh ex vivo material at body temperature