71 research outputs found

    ParIC : A Family of Parallel Incomplete Cholesky Preconditioners

    Get PDF
    A class of parallel incomplete factorization preconditionings for the solution of large linear systems is investigated. The approach may be regarded as a generalized domain decomposition method. Adjacent subdomains have to communicate during the setting up of the precon­ ditioner, and during the application of the preconditioner. Overlap is not necessary to achieve high performance. Fill­in levels are considered in a global way. If necessary, the technique may be implemented as a global re­ordering of the unknowns. Experimental results are reported for two­dimensional problems

    Observational diagnostics of gas in protoplanetary disks

    Full text link
    Protoplanetary disks are composed primarily of gas (99% of the mass). Nevertheless, relatively few observational constraints exist for the gas in disks. In this review, I discuss several observational diagnostics in the UV, optical, near-IR, mid-IR, and (sub)-mm wavelengths that have been employed to study the gas in the disks of young stellar objects. I concentrate in diagnostics that probe the inner 20 AU of the disk, the region where planets are expected to form. I discuss the potential and limitations of each gas tracer and present prospects for future research.Comment: Review written for the proceedings of the conference "Origin and Evolution of Planets 2008", Ascona, Switzerland, June 29 - July 4, 2008. Date manuscript: October 2008. 17 Pages, 6 graphics, 134 reference

    Locally advanced pancreatic cancer: Work-up, staging, and local intervention strategies

    Get PDF
    Locally advanced pancreatic cancer (LAPC) has several definitions but essentially is a nonmetastasized pancreatic cancer, in which upfront resection is considered not beneficial due to extensive vascular involvement and consequent high chance of a nonradical resection. The introduction of FOLFIRINOX chemotherapy and gemcitabine-nab-paclitaxel (gem-nab) has had major implications for the management and outcome of patients with LAPC. After 4–6 months induction chemotherapy, the majority of patients have stable disease or even tumor-regression. Of these, 12 to 35% are successfully downstaged to resectable disease. Several studies have reported a 30–35 months overall survival after resection; although it currently remains unclear if this is a result of the resection or the good response to chemotherapy. Following chemotherapy, selection of patients for resection is difficult, as contrast-enhanced computed-tomography (CT) scan is unreliable in differentiating between viable tumor and fibrosis. In case a resection is not considered possible but stable disease is observed, local ablative techniques are being studied, such as irreversible electroporation, radiofrequency ablation, and stereotactic body radiation therapy. Pragmatic, multicenter, randomized studies will ultimately have to confirm the exact role of both surgical exploration and ablation in these patients. Since evidence-based guidelines for the management of LAPC are lacking, this review proposes a standardized approach for the treatment of LAPC based on the best available evidence

    The Prospective Dutch Colorectal Cancer (PLCRC) cohort: real-world data facilitating research and clinical care

    Get PDF
    Real-world data (RWD) sources are important to advance clinical oncology research and evaluate treatments in daily practice. Since 2013, the Prospective Dutch Colorectal Cancer (PLCRC) cohort, linked to the Netherlands Cancer Registry, serves as an infrastructure for scientific research collecting additional patient-reported outcomes (PRO) and biospecimens. Here we report on cohort developments and investigate to what extent PLCRC reflects the “real-world”. Clinical and demographic characteristics of PLCRC participants were compared with the general Dutch CRC population (n = 74,692, Dutch-ref). To study representativeness, standardized differences between PLCRC and Dutch-ref were calculated, and logistic regression models were evaluated on their ability to distinguish cohort participants from the Dutch-ref (AU-ROC 0.5 = preferred, implying participation independent of patient characteristics). Stratified analyses by stage and time-period (2013–2016 and 2017–Aug 2019) were performed to study the evolution towards RWD. In August 2019, 5744 patients were enrolled. Enrollment increased steeply, from 129 participants (1 hospital) in 2013 to 2136 (50 of 75 Dutch hospitals) in 2018. Low AU-ROC (0.65, 95% CI: 0.64–0.65) indicates limited ability to distinguish cohort participants from the Dutch-ref. Characteristics that remained imbalanced in the period 2017–Aug’19 compared with the Dutch-ref were age (65.0 years in PLCRC, 69.3 in the Dutch-ref) and tumor stage (40% stage-III in PLCRC, 30% in the Dutch-ref). PLCRC approaches to represent the Dutch CRC population and will ultimately meet the current demand for high-quality RWD. Efforts are ongoing to improve multidisciplinary recruitment which will further enhance PLCRC’s representativeness and its contribution to a learning healthcare system

    Colorectal liver metastases: Surgery versus thermal ablation (COLLISION) - a phase III single-blind prospective randomized controlled trial

    Get PDF
    Background: Radiofrequency ablation (RFA) and microwave ablation (MWA) are widely accepted techniques to eliminate small unresectable colorectal liver metastases (CRLM). Although previous studies labelled thermal ablation inferior to surgical resection, the apparent selection bias when comparing patients with unresectable disease to surgical candidates, the superior safety profile, and the competitive overall survival results for the more recent reports mandate the setup of a randomized controlled trial. The objective of the COLLISION trial is to prove non-inferiority of thermal ablation compared to hepatic resection in patients with at least one resectable and ablatable CRLM and no extrahepatic disease. Methods: In this two-arm, single-blind multi-center phase-III clinical trial, six hundred and eighteen patients with at least one CRLM (≤3cm) will be included to undergo either surgical resection or thermal ablation of appointed target lesion(s) (≤3cm). Primary endpoint is OS (overall survival, intention-to-treat analysis). Main secondary endpoints are overall disease-free survival (DFS), time to progression (TTP), time to local progression (TTLP), primary and assisted technique efficacy (PTE, ATE), procedural morbidity and mortality, length of hospital stay, assessment of pain and quality of life (QoL), cost-effectiveness ratio (ICER) and quality-adjusted life years (QALY). Discussion: If thermal ablation proves to be non-inferior in treating lesions ≤3cm, a switch in treatment-method may lead to a reduction of the post-procedural morbidity and mortality, length of hospital stay and incremental costs without compromising oncological outcome for patients with CRLM. Trial registration:NCT03088150 , January 11th 2017

    Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors

    No full text
    Red-emitting Mn4+-doped fluorides are a promising class of materials to improve the color rendering and luminous efficacy of white light-emitting diodes (w-LEDs). For w-LEDs, the luminescence quenching temperature is very important, but surprisingly no systematic research has been conducted to understand the mechanism for thermal quenching in Mn4+-doped fluorides. Furthermore, concentration quenching of the Mn4+ luminescence can be an issue but detailed investigations are lacking. In this work, we study thermal quenching and concentration quenching in Mn4+-doped fluorides by measuring luminescence spectra and decay curves of K2TiF6:Mn4+ between 4 and 600 K and for Mn4+ concentrations from 0.01% to 15.7%. Temperature-dependent measurements on K2TiF6:Mn4+ and other Mn4+-doped phosphors show that quenching occurs through thermally activated crossover between the 4T2 excited state and 4A2 ground state. The quenching temperature can be optimized by designing host lattices in which Mn4+ has a high 4T2 state energy. Concentration-dependent studies reveal that concentration quenching effects are limited in K2TiF6:Mn4+ up to 5% Mn4+. This is important, as high Mn4+ concentrations are required for sufficient absorption of blue LED light in the parity-forbidden Mn4+ d-d transitions. At even higher Mn4+ concentrations (>10%), the quantum efficiency decreases, mostly due to direct energy transfer to quenching sites (defects and impurity ions). Optimization of the synthesis to reduce quenchers is crucial for developing more efficient highly absorbing Mn4+ phosphors. The present systematic study provides detailed insights into temperature and concentration quenching of Mn4+ emission and can be used to realize superior narrow-band red Mn4+ phosphors for w-LEDs
    • …
    corecore