11 research outputs found

    Contrasting coloration in terrestrial mammals

    No full text
    Here I survey, collate and synthesize contrasting coloration in 5000 species of terrestrial mammals focusing on black and white pelage. After briefly reviewing alternative functional hypotheses for coloration in mammals, I examine nine colour patterns and combinations on different areas of the body and for each mammalian taxon to try to identify the most likely evolutionary drivers of contrasting coloration. Aposematism and perhaps conspecific signalling are the most consistent explanations for black and white pelage in mammals; background matching may explain white pelage. Evidence for contrasting coloration is being involved in crypsis through pattern blending, disruptive coloration or serving other functions, such as signalling dominance, lures, reducing eye glare or in temperature regulation has barely moved beyond anecdotal stages of investigation. Sexual dichromatism is limited in this taxon and its basis is unclear. Astonishingly, the functional significance of pelage coloration in most large charismatic black and white mammals that were new to science 150 years ago still remains a mystery

    Genotyping faeces links individuals to their diet

    No full text
    The detection of individual variation in foraging behaviour within wild mammal populations requires large sample sizes and relies on the multifold re-sampling of individuals. However, limits for observational studies are posed by the rarity and nocturnal or otherwise elusive habits of many mammals. We propose that the detection of foraging variation within populations of mammals may be facilitated if conventional diet analysis from faeces is combined with DNA-based individual identification methods using genetic fingerprinting”” from faeces. We applied our approach to a coyote (Canis latrans) population, and showed how individuals may vary from one another in their diet profiles. Two main groups of coyotes were distinguished on the basis of their relative use of small mammals and other vertebrates”” as primary food sources, and these two groups were further subdivided on the basis of their relative use of other vertebrates”” and fruit as secondary food sources. We show that, unless a faecal sampling scheme is used that maximizes the number of different individuals included in a survey, individual foraging variation that is left unaccounted for may result in downwardly biased faecal diet diversity estimates. Our approach allows the re-sampling of individuals over time and space, and thus may be generally useful for the testing of optimal foraging theory hypotheses in mammals and also has conservation applications.Peer reviewe

    Predation impacts and management strategies for wildlife protection

    No full text
    corecore