11 research outputs found

    Approximate relativistic bound state solutions of the Tietz-Hua rotating oscillator for any -state

    Full text link
    Approximate analytic solutions of the Dirac equation with Tietz-Hua (TH) potential are obtained for arbitrary spin-orbit quantum number using the Pekeris approximation scheme to deal with the spin-orbit coupling terms In the presence of exact spin and pseudo-spin (pspin) symmetric limitation, the bound state energy eigenvalues and associated two-component wave functions of the Dirac particle moving in the field of attractive and repulsive TH potential are obtained using the parametric generalization of the Nikiforov-Uvarov (NU) method. The cases of the Morse potential, the generalized Morse potential and non-relativistic limits are studied.Comment: 19 pages; 7 figures; Few-Body Systems (2012) (at press

    International Lower Limb Collaborative (INTELLECT) study : a multicentre, international retrospective audit of lower extremity open fractures

    Get PDF

    Strict language inequalities and their decision problems

    No full text
    Abstract. Systems of language equations of the form {ϕ(X1,..., Xn) = ∅, ψ(X1,..., Xn) � = ∅} are studied, where ϕ, ψ may contain set-theoretic operations and concatenation; they can be equivalently represented as strict inequalities ξ(X1,..., Xn) ⊂ L0. It is proved that the problem whether such an inequality has a solution is Σ2-complete, the problem whether it has a unique solution is in (Σ3 ∩Π3)\(Σ2 ∪Π2), the existence of a regular solution is a Σ1-complete problem, while testing whether there are finitely many solutions is Σ3-complete. The class of languages representable by their unique solutions is exactly the class of recursive sets, though a decision procedure cannot be algorithmically constructed out of an inequality, even if a proof of solution uniqueness is attached.
    corecore