3 research outputs found

    Predicting Missing Links via Local Information

    Get PDF
    Missing link prediction of networks is of both theoretical interest and practical significance in modern science. In this paper, we empirically investigate a simple framework of link prediction on the basis of node similarity. We compare nine well-known local similarity measures on six real networks. The results indicate that the simplest measure, namely common neighbors, has the best overall performance, and the Adamic-Adar index performs the second best. A new similarity measure, motivated by the resource allocation process taking place on networks, is proposed and shown to have higher prediction accuracy than common neighbors. It is found that many links are assigned same scores if only the information of the nearest neighbors is used. We therefore design another new measure exploited information of the next nearest neighbors, which can remarkably enhance the prediction accuracy.Comment: For International Workshop: "The Physics Approach To Risk: Agent-Based Models and Networks", http://intern.sg.ethz.ch/cost-p10

    Identifying Missing and Spurious Interactions in Directed Networks

    No full text
    Recent years, the studies of link prediction have been overwhelmingly emphasizing on undirected networks. Compared with it, how to identify missing and spurious interactions in directed networks has received less attention and still is not well understood. In this paper, we make use of classical link prediction indices for undirected networks, adapt them to directed version which could predict both the existence and direction of an arc between two nodes, and investigate their prediction ability on six real-world directed networks. Experimental results demonstrate that those modified indices perform quite well in directed networks. Compared with bifan predictor, some of them can provide more accurate predictions
    corecore