182 research outputs found

    Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes

    Full text link
    The light transmission through a dispersive plasmonic circular hole is numerically investigated with an emphasis on its subwavelength guidance. For a better understanding of the effect of the hole diameter on the guided dispersion characteristics, the guided modes, including both the surface plasmon polariton mode and the circular waveguide mode, are studied for several hole diameters, especially when the metal cladding has a plasmonic frequency dependency. A brief comparison is also made with the guided dispersion characteristics of a dispersive plasmonic gap [K. Y. Kim, et al., Opt. Express 14, 320-330 (2006)], which is a planar version of the present structure, and a circular waveguide with perfect electric conductor cladding. Finally, the modal behavior of the first three TM-like principal modes with varied hole diameters is examined for the same operating mode.Comment: 20 pages, 5 figures, 1 tabl

    A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate

    Get PDF
    One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described
    corecore