38 research outputs found

    Mineralogical Transformations and Soil Development in Shale Across a Latitudinal Climosequence

    Get PDF
    To investigate factors controlling soil formation, we established a climosequence as part of the Susquehanna-Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania, USA. Sites were located on organic matter-poor, iron-rich Silurian-aged shale in Wales, Pennsylvania, Virginia, Tennessee, Alabama, and Puerto Rico, although this last site is underlain by a younger shale. Across the climosequence, mean annual temperature (MAT) increases from 7 to 24°C and mean annual precipitation (MAP) ranges from 100 to 250 cm. Variations in soil characteristics along the climosequence, including depth, morphology, particle-size distribution, geochemistry, and bulk and clay mineralogy, were characterized to investigate the role of climate in controlling mineral transformations and soil formation. Overall, soil horizonation, depth, clay content, and chemical depletion increase with increasing temperature and precipitation, consistent with enhanced soil development and weathering processes in warmer and wetter locations. Secondary minerals are present at higher concentrations at the warmest sites of the climosequence; kaolinite increases from \u3c5% at northern sites in Wales and Pennsylvania to 30% in Puerto Rico. The deepest observed weathering reaction is plagioclase feldspar dissolution followed by the transformation of chlorite and illite to vermiculite and hydroxy-interlayered vermiculite. Plagioclase, although constituting \u3c12% of the initial shale mineralogy, may be the profile initiating reaction that begins shale bedrock transformation to weathered regolith. Weathering of the more abundant chlorite and illite minerals (∌70% of initial mineralogy), however, are more likely controlling regolith thickness. Climate appears to play a central role in driving soil formation and mineral weathering reactions across the climosequence

    Archivage dans les sols, des changements de leur environnement naturel ou anthropique

    No full text
    National audienc

    Acid inputs from the atmosphere in the United Kingdom.

    No full text
    Inputs of acidity to the ground arise through two distinct routes: wet deposition which includes all acidity deposited in rain and snow and dry deposition, the direct sorption of SO2, NO2 or HNO3 gases by vegetation or soil surfaces. The acidity from dry deposition of SO2 and NO2 is created during the oxidation of deposited SO2 and NO2 to SO24 and NO3− respectively. The areas of Britain experiencing the largest wet deposition of acidity are the high rainfall areas of the west and north, in particular the west central highlands of Scotland, Galloway and Cumbria where inputs exceed 1 kp H+ ha−1 annually. Wet deposited acidity in the east coast regions of Britain is in the range 0.3–0.6 kg H+ ha−1 a−1. Monitoring data for rainfall acidity at rural sites throughout northern Britain show a decline in deposited acidity of about 50% during the last six years. Dry deposition is largest in the industrial midlands and southeast England and in the central lowlands of Scotland, where concentrations of SO2 are largest. In these regions the dry deposition of SO2 following oxidation may lead to acid inputs approaching 3 kg H+ ha−1 a−1 and greatly exceeding wet deposition

    Lessons learned in the development of a national cooperative program

    No full text
    corecore