533 research outputs found

    Lithium chemistry of lithium doped magnesium oxide catalysts used in the oxidative coupling of methane

    Get PDF
    Active sites are created on the surface of a Li/MgO catalyst used for the selective oxidation of methane by the gradual loss of carbon dioxide from surface carbonate species in the presence of oxygen. Decomposition of the carbonate species in the absence of oxygen is detrimental to the activity of the catalyst. The active sites created are not stable but disappear either as a result of reaction with SiO2 to form Li2SiO3 or by the formation and subsequent loss of the volatile compound LiOH. In general the addition of water to the gas feed is detrimental to the stability of the catalyst. In the case of Li2CO3 strongly bonded on the surface of Li/MgO catalyst, the decomposition of the carbonate and thus the initial activity, can be enhanced by the addition of water to the gas feed. The addition of carbon dioxide to the gas feed results in a poisoning of the catalyst, the degree of this poisoning depending on the activity of the catalyst. The deactivation of the catalyst can be retarded if low concentration of carbon dioxide are added to the reaction mixture. It is possible to improve the stability of the catalyst by periodic reversal of the direction of flow of the gas steam

    On the design of an image compression scheme based upon a priori knowledge about imaging system and image statistics

    Get PDF
    This contribution is about the design of an image compression scheme for near loss-less image compression of a restricted class of images and a specific application. The images are digital diagnostic X-ray images of the coronary vessels of the human heart. This paper proposes a novel compression scheme with a compression ratio of 8-10 with preservation of the diagnostic image quality. Central in our approach is the amount of information a trained and highly skilled observer i.e. the cardiologist is able discern at a given exposure and thus quantum noise level. The physics of the image detection process together with the a priori knowledge of the imaging system are the basis of the image statistics. Relevant elements of the human visual system complete the stochastic characterization of imaging process whereon the compression scheme is based. 1

    Objective Acoustic-Phonetic Speech Analysis in Patients Treated for Oral or Oropharyngeal Cancer

    Get PDF
    Objective: Speech impairment often occurs in patients after treatment for head and neck cancer. New treatment modalities such as surgical reconstruction or (chemo) radiation techniques aim at sparing anatomical structures that are correlated with speech and swallowing. In randomized trials investigating efficacy of various treatment modalities or speech rehabilitation, objective speech analysis techniques may add to improve speech outcome assessment. The goal of the present study is to investigate the role of objective acoustic-phonetic analyses in a multidimensional speech assessment protocol. Patients and Methods: Speech recordings of 51 patients (6 months after reconstructive surgery and postoperative radiotherapy for oral or oropharyngeal cancer) and of 18 control speakers were subjectively evaluated regarding intelligibility, nasal resonance, articulation, and patient-reported speech outcome (speech subscale of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Head and Neck 35 module). Acoustic-phonetic analyses were performed to calculate formant values of the vowels /a, i, u/, vowel space, air pressure release of /k/ and spectral slope of /x/. Results: Intelligibility, articulation, and nasal resonance were best predicted by vowel space and /k/. Within patients, /k/ and /x/ differentiated tumor site and stage. Various objective speech parameters were related to speech problems as reported by patients. Conclusion: Objective acoustic-phonetic analysis of speech of patients is feasible and contributes to further development of a speech assessment protocol. Copyright (C) 2009 S. Karger AG, Base

    The Shadow Price of Irrigation Water in Major Groundwater‐Depleting Countries

    Get PDF
    In many semiarid regions with irrigation, the depletion rate of groundwater resources has increased substantially during the last decades. A possible reason for this is that the price that users pay for their water does not reflect its scarcity and value. An alternative way to assess the perceived value of water is calculating its shadow price, which is defined here as the marginal value produced, and relates to the efficiency gain from current reallocation. Here we determine the shadow price of water used for irrigation for the most important groundwater‐depleting countries and for four staple crops and one cash crop. To quantify the shadow price, the relation between the output and the water input is represented using production functions. We use globally available panel data on country‐specific crop yields and prices together with crop‐specific water consumption, calculated with the global hydrological model PCR‐GLOBWB, to parameterize the production function by country and crop with econometric analyses. Our results show that the variation of shadow prices for staple crops within several countries is high, indicating economically inefficient use of water resources, including nonrenewable groundwater. We also analyze the effects of reallocating irrigation water between crops, showing that changes in water allocation could lead to either an increase in the economic efficiency of water use or large reductions in irrigation water consumption. Our study thus provides a hydroeconomic basis to stimulate sustainable use of finite groundwater resources globally

    Beta-Blocking Agents and Electroconvulsive Therapy

    Get PDF
    In this review we want to summarize the results of the placebo-controlled randomized clinical trials with betablocking adrenergic agents during electroconvulsive therapy (ECT), and review the effect on seizure duration and cardiovascular variables. We sea

    A new in vivo screening model for posterior spinal bone formation: comparison of ten calcium phosphate ceramic material treatments

    Get PDF
    This study presents a new screening model for evaluating the influence of multiple conditions on the initial process of bone formation in the posterior lumbar spine of a large animal. This model uses cages designed for placement on the decorticated transverse process of the goat lumbar spine. Five conduction channels per cage, each be defined by a different material treatment, are open to both the underlying bone and overlying soft tissue. The model was validated in ten adult Dutch milk goats, with each animal implanted with two cages containing a total of ten calcium phosphate material treatments according to a randomized complete block design. The ten calcium phosphate ceramic materials were created through a combination of material chemistry (BCP, TCP, HA), sintering temperature (low, medium, high), calcination and surface roughness treatments. To monitor the bone formation over time, fluorochrome markers were administered at 3, 5 and 7 weeks and the animals were sacrificed at 9 weeks after implantation. Bone formation in the conduction channels was investigated by histology and histomorphometry of non-decalcified sections using traditional light and epifluorescent microscopy. According to both observed and measured bone formation parameters, materials were ranked in order of increasing magnitude as follows: low sintering temperature BCP (rough and smooth)≈medium sintering temperature BCP≈TCP>calcined low sintering temperature HA>non-calcined low sintering temperature HA>high sintering temperature BCP (rough and smooth)>high sintering temperature HA (calcined and non-calcined). These results agree closely with those obtained in previous studies of osteoconduction and bioactivity of ceramics thereby validating the screening model presented in this study
    • 

    corecore