3 research outputs found

    Polarized deep inelastic scattering at high energies and parity violating structure functions

    Full text link
    A comprehensive analysis of deep inelastic scattering of polarized charged leptons on polarized nucleons is presented; weak interaction contributions, both in neutral and charged current processes, are taken into account and the parity violating polarized nucleon structure functions are studied. Possible ways of their measurements and their interpretations in the parton model are discussed.Comment: (slightly modified version, includes a few new references and corrects few misprints for publication), 14 pages in TeX (needs harvmac) no figure, DFTT 80/9

    Parity violating target asymmetry in electron - proton scattering

    Get PDF
    We analyze the parity-violating (PV) components of the analyzing power in elastic electron-proton scattering and discuss their sensitivity to the strange quark contributions to the proton weak form factors. We point out that the component of the analyzing power along the momentum transfer is independent of the electric weak form factor and thus compares favorably with the PV beam asymmetry for a determination of the strangeness magnetic moment. We also show that the transverse component could be used for constraining the strangeness radius. Finally, we argue that a measurement of both components could give experimental information on the strangeness axial charge.Comment: 24 pages, Latex, 5 eps figures, submitted to Phys.Rev.

    Restricting quark matter models by gravitational wave observation

    Full text link
    We consider the possibilities for obtaining information about the equation of state for quark matter by using future direct observational data on gravitational waves. We study the nonradial oscillations of both fluid and spacetime modes of pure quark stars. If we observe the ff and the lowest wIIw_{\rm II} modes from quark stars, by using the simultaneously obtained radiation radius we can constrain the bag constant BB with reasonable accuracy, independently of the ss quark mass.Comment: To appear in Phys. Rev.
    corecore