43 research outputs found

    Turbulence and mixing by internal waves in the Celtic Sea determined from ocean glider microstructure measurements

    Get PDF
    We present a new series of data from a 9-day deployment of an ocean microstructure glider (OMG) in the Celtic Sea during the summer of 2012. The OMG has been specially adapted to measure shear microstructure and coincident density structure from which we derive the dissipation rate of turbulent kinetic energy (ε) and diapycnal diffusion rates (K). The methods employed to provide trustworthy turbulent parameters are described and data from 766 profiles of ε, temperature, salinity and density structure are presented. Surface and bottom boundary layers are intuitively controlled by wind and tidal forcing. Interior dynamics is dominated by a highly variable internal wave-field with peak vertical displacements in excess of 50 m, equivalent to over a third of the water depth. Following a relatively quiescent period internal wave energy, represented by the available potential energy (APE), increases dramatically close to the spring tide flow. Rather than follow the assumed spring-neap cycle however, APE is divided into two distinct peak periods lasting only one or two days. Pycnocline ε also increases close to the spring tide period and similar to APE, is distinguishable as two distinct energetic periods, however the timing of these periods is not consistent with APE. Pycnocline mixing associated with the observed ε is shown to be responsible for the majority of the observed reduction in bottom boundary layer density suggesting that diapycnal exchange is a key mechanism in controlling or limiting exchange between the continental shelf and the deep ocean. Results confirm pycnocline turbulence to be highly variable and difficult to predict however a log-normal distribution does suggest that natural variability could be reproduced if the mean state can be accurately simulated

    Assessment of coastal density gradients near a macro-tidal estuary: Application to the Mersey and Liverpool Bay

    Get PDF
    Density gradients in coastal regions with significant freshwater input are large and variable and are a major control of nearshore circulation. However their measurement is difficult, especially where the gradients are largest, close to the coast, with significant uncertainties because of a variety of factors – time and spatial (horizontal and vertical) scales are small, tidal currents are strong and water depths shallow. Whilst temperature measurements are relatively straightforward, measurement of salinity (the dominant control of spatial variability for density) can be less reliable in turbid coastal waters

    New treatments for patients with type 2 diabetes mellitus.

    No full text
    In subjects with type 2 diabetes, both defects of insulin secretion and insulin resistance contribute to the development of hyperglycaemia. The major goals of treatment are to optimise blood glucose control, and normalise the associated lipid disturbances and elevated blood pressure. Pharmacologic treatment is often necessary. This paper discusses new forms of oral treatment for subjects with type 2 diabetes. These include a new sulphonylurea compound glimepiride (Amaryl), which binds to a different protein of the putative sulphonylurea receptor than glibenclamide, and seems to have a lower risk of hypoglycaemia. A new class of drugs with insulin secretory capacity, of which repaglinide (NovoNorm) is the leading compound, is now in phase III clinical trials. Alpha-glucosidase inhibitors reversibly inhibit alpha-glucosidase enzymes in the small intestine, which delays cleavage of oligo- and disaccharides to monosaccharides. This leads to a delayed and reduced blood glucose rise after a meal. Two compounds are in development or have been marketed, ie, miglitol and acarbose (Glucobay). Another new class of drugs is the thiazolidine-diones, which seem to work by enhancing insulin action. The 'insulin sensitising' effects of the leading compounds, troglitazone and BRL 49653C, do not involve any effect on insulin secretion. These drugs also seem to beneficially influence serum cholesterol and triglyceride levels. Oral antihyperglycaemic agents can be used only during a limited period of time in most patients, after which the diabetic state 'worsens' and insulin therapy has to be started. In this light, two new forms of treatment which require subcutaneous injections are also discussed: the synthetic human amylin analogue AC137 (pramlintide) and glucagon-like peptide-1 (7-36)-amide, a strong glucose-dependent stimulator of insulin secretion. It remains to be seen whether these compounds can be developed further for clinical use in patients with diabetes
    corecore