14,016 research outputs found
Vacuum-isolation vessel and method for measurement of thermal noise in microphones
The vacuum isolation vessel and method in accordance with the present invention are used to accurately measure thermal noise in microphones. The apparatus and method could be used in a microphone calibration facility or any facility used for testing microphones. Thermal noise is measured to determine the minimum detectable sound pressure by the microphone. Conventional isolation apparatus and methods have been unable to provide an acoustically quiet and substantially vibration free environment for accurately measuring thermal noise. In the present invention, an isolation vessel assembly comprises a vacuum sealed outer vessel, a vacuum sealed inner vessel, and an interior suspension assembly coupled between the outer and inner vessels for suspending the inner vessel within the outer vessel. A noise measurement system records thermal noise data from the isolation vessel assembly. A vacuum system creates a vacuum between an internal surface of the outer vessel and an external surface of the inner vessel. The present invention thus provides an acoustically quiet environment due to the vacuum created between the inner and outer vessels and a substantially vibration free environment due to the suspension assembly suspending the inner vessel within the outer vessel. The thermal noise in the microphone, effectively isolated according to the invention, can be accurately measured
Grain-boundary grooving and agglomeration of alloy thin films with a slow-diffusing species
We present a general phase-field model for grain-boundary grooving and
agglomeration of polycrystalline alloy thin films. In particular, we study the
effects of slow-diffusing species on grooving rate. As the groove grows, the
slow species becomes concentrated near the groove tip so that further grooving
is limited by the rate at which it diffuses away from the tip. At early times
the dominant diffusion path is along the boundary, while at late times it is
parallel to the substrate. This change in path strongly affects the
time-dependence of grain boundary grooving and increases the time to
agglomeration. The present model provides a tool for agglomeration-resistant
thin film alloy design. keywords: phase-field, thermal grooving, diffusion,
kinetics, metal silicidesComment: 4 pages, 6 figure
Doping Dependence of Spin Dynamics in Electron-Doped Ba(Fe1-xCox)2As2
The spin dynamics in single crystal, electron-doped Ba(Fe1-xCox)2As2 has been
investigated by inelastic neutron scattering over the full range from undoped
to the overdoped regime. We observe damped magnetic fluctuations in the normal
state of the optimally doped compound (x=0.06) that share a remarkable
similarity with those in the paramagnetic state of the parent compound (x=0).
In the overdoped superconducting compound (x=0.14), magnetic excitations show a
gap-like behavior, possibly related to a topological change in the hole Fermi
surface (Lifshitz transition), while the imaginary part of the spin
susceptibility prominently resembles that of the overdoped cuprates. For the
heavily overdoped, non-superconducting compound (x=0.24) the magnetic
scattering disappears, which could be attributed to the absence of a hole
Fermi-surface pocket observed by photoemission.Comment: 6 pages, 5 figures, published versio
Destruction of Neel order and appearance of superconductivity in electron-doped cuprates by oxygen annealing process
We use thermodynamic and neutron scattering measurements to study the effect
of oxygen annealing on the superconductivity and magnetism in
PrLaCeCuO. Although the transition temperature
measured by susceptibility and superconducting coherence length increase
smoothly with gradual oxygen removal from the annealing process, bulk
superconductivity, marked by a specific heat anomaly at and the presence
of a neutron magnetic resonance, only appears abruptly when is close to
the largest value. These results suggest that the effect of oxygen annealing
must be first determined in order to establish a Ce-doping dependence of
antiferromagnetism and superconductivity phase diagram for electron-doped
copper oxides.Comment: 5 pages, 4 figures, accepted by Phys. Rev.
A putative stimulatory role for activator turnover in gene expression
The ubiquitin–proteasome system (UPS) promotes the destruction of target proteins by attaching to them a ubiquitin chain that is recognized by the 26S proteasome. The UPS influences most cellular processes, and its targets include transcriptional activators that are primary determinants of gene expression. Emerging evidence indicates that non-proteolytic functions of the UPS might stimulate transcriptional activity. Here we show that the proteolysis of some transcriptional activators by the UPS can stimulate their function. We focused on the role of UPS-dependent proteolysis in the function of inducible transcriptional activators in yeast, and found that inhibition of the proteasome reduced transcription of the targets of the activators Gcn4, Gal4 and Ino2/4. In addition, mutations in SCF^(Cdc4), the ubiquitin ligase for Gcn4 (ref. 5), or mutations in ubiquitin that prevent degradation, also impaired the transcription of Gcn4 targets. These transcriptional defects were manifested despite the enhanced abundance of Gcn4 on cognate promoters. Proteasome inhibition also decreased the association of RNA polymerase II with Gcn4, Gal4 and Ino2/4 targets, as did mutations in SCFCdc4 for Gcn4 targets. Expression of a stable phospho-site mutant of Gcn4 (ref. 7) or disruption of the kinases that target Gcn4 for turnover alleviated the sensitivity of Gcn4 activity to defects in the UPS
Luttinger Liquid phase in the Aubry-Andr\'e Hubbard chain
We study the interplay between an on-site Hubbard repulsion and quasiperiodic
potential in one-dimensional fermion chains using the density matrix
renormalization group. We find that, at half-filling, the quasiperiodic
potential can destroy the Mott gap, leading to a metallic Luttinger liquid
phase between the gapped Mott insulator at strong repulsion and localized
gapless Aubry- Andr\'e insulator at strong quasiperiodic potential. Away from
half-filing, the metallic phase of the interacting model persists to larger
critical strengths of the potential than in the non-interacting case,
suggesting interaction-stabilized delocalization at finite doping. We
characterize the Luttinger liquid through its charge and spin correlations,
structure factors, and entanglement entropy
BL Lacertae are probable sources of the observed ultra-high energy cosmic rays
We calculate angular correlation function between ultra-high energy cosmic
rays (UHECR) observed by Yakutsk and AGASA experiments, and most powerful BL
Lacertae objects. We find significant correlations which correspond to the
probability of statistical fluctuation less than , including penatly
for selecting the subset of brightest BL Lacs. We conclude that some of BL Lacs
are sources of the observed UHECR and present a list of most probable
candidates.Comment: Replaced with the version accepted for publication in JETP Let
- …