10,842 research outputs found

    Exclusive W^+ + photon production in proton-antiproton collisions II: results

    Full text link
    We present results for total cross sections, single and double differential distributions and correlations between pairs of outgoing particles in the reactions p + antip --> W^+ + photon and p + antip --> W^+ + photon + jet at sqrt(S)=1.8 TeV. Order alpha-strong QCD corrections and leading logarithm photon bremsstrahlung contributions are included in the MS-bar mass factorization scheme for three experimental scenarios: 1) 2-body inclusive production of W^+ and photon, 2) exclusive production of W^+, photon and 1 jet and 3) exclusive production of W^+ and photon with 0 jet. The latest CTEQ parton distribution functions, which fit the newly released HERA data, are used in our analysis. The dependence of our results on the mass factorization scale is used to place error bars on our predictions for the single differential distributions and correlations.Comment: 15 pages (LateX). 50 pages of postscript figures available via ftp anonymous from max.physics.sunysb.edu in the directory preprints/mendoza/EXCLUSIVE_W_GAMMA_II.dir (files named fig_*.ps) ITP-SB-93-80. ([email protected])([email protected]

    Possible cosmological implications in electrodynamics due to variations of the fine structure constant

    Full text link
    Astronomical observations are suggesting that the fine structure constant varies cosmologically. We present an analysis on the consequences that these variations might induce on the electromagnetic field as a whole. We show that under these circumstances the electrodynamics in vacuum could be described by two fields, the ``standard'' Maxwell's field and a new scalar field. We provide a generalised Lorentz force which can be used to test our results experimentally.Comment: 7 pages, no figures. Accepted for publication in Rev. Mex. Fis. (Some extra information included, references added and small corrections made to the original version

    Hydrodynamic Model for Conductivity in Graphene

    Get PDF
    Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of E{\cal E}, the dimensionless strength of the electric field, and provides excellent agreement with experimental data.Comment: 19 pages, 4 figure

    MOND as the weak-field limit of an extended metric theory of gravity

    Full text link
    We show that the Modified Newtonian Dynamics (MOND) regime can be fully recovered as the weak-field limit of a particular theory of gravity formulated in the metric approach. This is possible when Milgrom's acceleration constant is taken as a fundamental quantity which couples to the theory in a very consistent manner. As a consequence, the scale invariance of the gravitational interaction is naturally broken. In this sense, Newtonian gravity is the weak-field limit of general relativity and MOND is the weak-field limit of that particular extended theory of gravity.Comment: To appear in the proceedings of the 2011 Spanish Relativity Meeting (ERE2011) held in Madrid, Spain, 4 page

    Heat transport in the XXZXXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement

    Get PDF
    In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly-interacting regime, as evidenced by the heat-current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly-interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly-interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size
    corecore