45 research outputs found

    Note: Stacked rings for terahertz wave-guiding

    Get PDF
    We demonstrate the construction of corrugated waveguides using stacked rings to propagate terahertz frequencies. The waveguide allows propagation of the same fundamental mode as an optical-fiber, namely, the HE11 mode. This simple concept opens the way for corrugated wave-guides up to several terahertz, maintaining beam characteristics as for terahertz applications. (C) 2011 American Institute of Physics. [doi:10.1063/1.3597579

    Novel linear analysis for a gyrotron oscillator based on a spectral approach

    Get PDF
    With the aim of gaining a better physical insight into linear regimes in gyrotrons, a new linear model was developed. This model is based on a spectral approach for solving the self-consistent system of equations describing the wave-particle interaction in the cavity of a gyrotron oscillator. Taking into account the wall-losses self-consistently and including the main system inhomogeneities in the cavity geometry and in the magnetic field, the model is appropriate to consider real system parameters. The main advantage of the spectral approach, compared with a time-dependent approach, is the possibility to describe all of the stable and unstable modes, respectively, with negative and positive growth rates. This permits to reveal the existence of a new set of eigenmodes, in addition to the usual eigenmodes issued from cold-cavity modes. The proposed model can be used for studying other instabilities such as, for instance, backward waves potentially excited in gyrotron beam tunnels

    Start-up scenario studies in gyrotron oscillator using a novel linear and spectral code

    Get PDF
    A linear and spectral model has recently been developed [1], describing the self-consistent wave-particle interaction in a gyrotron oscillator. The spectral approach, compared to commonly used time-evolution approaches, has the possibility to describe all of the stable and unstable modes, respectively, with negative and positive growth rates. Moreover, this approach is numerically efficient and thus appropriate for parameter scans or start-up scenario studies. The model has been successfully benchmarked against real experiments for gyrotron cavity interaction, in particular concerning start-up scenario studies. In order to study backward-wave instabilities in smooth-wall beam ducts, the numerical model has been recently extended to include a higher order finite element discretization. The model, its numerical implementation and simulation results for high power gyrotrons as well as first results for smooth-wall beam ducts will be presented

    Parasitic Oscillations in Smooth-Wall Circular Symmetric Gyrotron Beam Ducts

    Get PDF
    In order to study parasitic oscillation that may occur in a realistic beam duct upstream to the gyrotron cavity, the self-consistent linear and spectral code TWANGlinspec has been modified. The large inhomogeneities in the smooth-wall beam duct geometry or in the magnetic field profile required the implementation of a numerical approach using a hybrid finite element method. The new model permits to characterize a large number of potentially spurious TE modes. Compared to previous studies on gyrotron beam duct instabilities, an extended interaction space including also the gyrotron cavity has been considered. The role of the connecting part between the beam duct and the cavity, called spacer, is highlighted and it is shown that the gyro backward-wave TE modes excited in this region generally have their minimum starting current. The sensitivity of the minimum starting current on electron beam velocity spread is also evaluated

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation
    corecore