76 research outputs found

    On a Conjecture of Rapoport and Zink

    Full text link
    In their book Rapoport and Zink constructed rigid analytic period spaces FwaF^{wa} for Fontaine's filtered isocrystals, and period morphisms from PEL moduli spaces of pp-divisible groups to some of these period spaces. They conjectured the existence of an \'etale bijective morphism FaFwaF^a \to F^{wa} of rigid analytic spaces and of a universal local system of QpQ_p-vector spaces on FaF^a. For Hodge-Tate weights n1n-1 and nn we construct in this article an intrinsic Berkovich open subspace F0F^0 of FwaF^{wa} and the universal local system on F0F^0. We conjecture that the rigid-analytic space associated with F0F^0 is the maximal possible FaF^a, and that F0F^0 is connected. We give evidence for these conjectures and we show that for those period spaces possessing PEL period morphisms, F0F^0 equals the image of the period morphism. Then our local system is the rational Tate module of the universal pp-divisible group and enjoys additional functoriality properties. We show that only in exceptional cases F0F^0 equals all of FwaF^{wa} and when the Shimura group is GLnGL_n we determine all these cases.Comment: v2: 48 pages; many new results added, v3: final version that will appear in Inventiones Mathematica
    corecore