642 research outputs found

    On the local unitary equivalence of states of multi-partite systems

    Get PDF
    Two pure states of a multi-partite system are alway are related by a unitary transformation acting on the Hilbert space of the whole system. This transformation involves multi-partite transformations. On the other hand some quantum information protocols such as the quantum teleportation and quantum dense coding are based on equivalence of some classes of states of bi-partite systems under the action of local (one-particle) unitary operations. In this paper we address the question: ``Under what conditions are the two states states, ϱ\varrho and σ\sigma, of a multi-partite system locally unitary equivalent?'' We present a set of conditions which have to be satisfied in order that the two states are locally unitary equivalent. In addition, we study whether it is possible to prepare a state of a multi-qudit system. which is divided into two parts A and B, by unitary operations acting only on the systems A and B, separately.Comment: 6 revtex pages, 1 figur

    Quantum Zeno tomography

    Full text link
    We show that the resolution "per absorbed particle" of standard absorption tomography can be outperformed by a simple interferometric setup, provided that the different levels of "gray" in the sample are not uniformly distributed. The technique hinges upon the quantum Zeno effect and has been tested in numerical simulations. The scheme we propose could be implemented in experiments with UV-light, neutrons or X-rays.Comment: 8 pages, 5 figure

    How many photons are needed to distinguish two transparencies?

    Get PDF
    We give a bound on the minimum number of photons that must be absorbed by any quantum protocol to distinguish between two transparencies. We show how a quantum Zeno method in which the angle of rotation is varied at each iteration can attain this bound in certain situations.Comment: 5 pages, 4 figure

    Non-adiabatic dynamics of two strongly coupled nanomechanical resonator modes

    Full text link
    The Landau-Zener transition is a fundamental concept for dynamical quantum systems and has been studied in numerous fields of physics. Here we present a classical mechanical model system exhibiting analogous behaviour using two inversely tuneable, strongly coupled modes of the same nanomechanical beam resonator. In the adiabatic limit, the anticrossing between the two modes is observed and the coupling strength extracted. Sweeping an initialized mode across the coupling region allows mapping of the progression from diabatic to adiabatic transitions as a function of the sweep rate

    Effect of anisotropy and destructuration on behavior of Haarajoki test embankment

    Get PDF
    This paper investigates the influence of anisotropy and destructuration on the behavior of Haarajoki test embankment, which was built by the Finnish National Road Administration as a noise barrier in 1997 on a soft clay deposit. Half of the embankment is constructed on an area improved with prefabricated vertical drains, while the other half is constructed on the natural deposit without any ground improvement. The construction and consolidation of the embankment is analyzed with the finite-element method using three different constitutive models to represent the soft clay. Two recently proposed constitutive models, namely S-CLAY1 which accounts for initial and plastic strain induced anisotropy, and its extension, called S-CLAY1S which accounts, additionally, for interparticle bonding and degradation of bonds, were used in the analysis. For comparison, the problem is also analyzed with the isotropic modified cam clay model. The results of the numerical analyses are compared with the field measurements. The simulations reveal the influence that anisotropy and destructuration have on the behavior of an embankment on soft clay

    Generating multimedia presentations: from plain text to screenplay

    Get PDF
    In many Natural Language Generation (NLG) applications, the output is limited to plain text – i.e., a string of words with punctuation and paragraph breaks, but no indications for layout, or pictures, or dialogue. In several projects, we have begun to explore NLG applications in which these extra media are brought into play. This paper gives an informal account of what we have learned. For coherence, we focus on the domain of patient information leaflets, and follow an example in which the same content is expressed first in plain text, then in formatted text, then in text with pictures, and finally in a dialogue script that can be performed by two animated agents. We show how the same meaning can be mapped to realisation patterns in different media, and how the expanded options for expressing meaning are related to the perceived style and tone of the presentation. Throughout, we stress that the extra media are not simple added to plain text, but integrated with it: thus the use of formatting, or pictures, or dialogue, may require radical rewording of the text itself

    Momentum transfer for momentum transfer-free which-path experiments

    Get PDF
    We analyze the origin of interference disappearance in which-path double aperture experiments. We show that we can unambiguously define an observable momentum transfer between the quantum particle and the path detector and we prove in particular that the so called ``momentum transfer free'' experiments can be in fact logically interpreted in term of momentum transfer.Comment: to appear in Phys. Rev . A (2006). (7 pages, 2 figures

    Robust plasmon waveguides in strongly-interacting nanowire arrays

    Full text link
    Arrays of parallel metallic nanowires are shown to provide a tunable, robust, and versatile platform for plasmon interconnects, including high-curvature turns with minimum signal loss. The proposed guiding mechanism relies on gap plasmons existing in the region between adjacent nanowires of dimers and multi-wire arrays. We focus on square and circular silver nanowires in silica, for which excellent agreement between both boundary element method and multiple multipolar expansion calculations is obtained. Our work provides the tools for designing plasmon-based interconnects and achieving high degree of integration with minimum cross talk between adjacent plasmon guides.Comment: 4 pages, 5 figure

    High-efficiency quantum interrogation measurements via the quantum Zeno effect

    Get PDF
    The phenomenon of quantum interrogation allows one to optically detect the presence of an absorbing object, without the measuring light interacting with it. In an application of the quantum Zeno effect, the object inhibits the otherwise coherent evolution of the light, such that the probability that an interrogating photon is absorbed can in principle be arbitrarily small. We have implemented this technique, demonstrating efficiencies exceeding the 50% theoretical-maximum of the original ``interaction-free'' measurement proposal. We have also predicted and experimentally verified a previously unsuspected dependence on loss; efficiencies of up to 73% were observed and the feasibility of efficiencies up to 85% was demonstrated.Comment: 4 pages, 3 postscript figures. To appear in Phys. Rev. Lett; submitted June 11, 199

    Measurements in two bases are sufficient for certifying high-dimensional entanglement

    Full text link
    High-dimensional encoding of quantum information provides a promising method of transcending current limitations in quantum communication. One of the central challenges in the pursuit of such an approach is the certification of high-dimensional entanglement. In particular, it is desirable to do so without resorting to inefficient full state tomography. Here, we show how carefully constructed measurements in two bases (one of which is not orthonormal) can be used to faithfully and efficiently certify bipartite high-dimensional states and their entanglement for any physical platform. To showcase the practicality of this approach under realistic conditions, we put it to the test for photons entangled in their orbital angular momentum. In our experimental setup, we are able to verify 9-dimensional entanglement for a pair of photons on a 11-dimensional subspace each, at present the highest amount certified without any assumptions on the state.Comment: 11+14 pages, 2+7 figure
    corecore