3,413,060 research outputs found

    Nature of Decoupling in the Mixed Phase of Extremely Type-II Layered Superconductors

    Full text link
    The uniformly frustrated layered XY model is analyzed in its Villain form. A decouple pancake vortex liquid phase is identified. It is bounded by both first-order and second-order decoupling lines in the magnetic field versus temperature plane. These transitions, respectively, can account for the flux-lattice melting and for the flux-lattice depinning observed in the mixed phase of clean high-temperature superconductors.Comment: 11 pages of PLAIN TeX, 1 postscript figure, published version, many change

    J/psi production at sqrt(s)=1.96 and 7 TeV: Color-Singlet Model, NNLO* and polarisation

    Full text link
    We study J/psi production in pp collisions at sqrt(s)=1.96 and 7 TeV using the Colour-Singlet Model (CSM), including next-to-leading order (NLO) corrections and dominant alphaS^5 contributions (NNLO*). We find that the CSM reproduces the existing data if the upper range of the NNLO* is near the actual --but presently unknown-- NNLO. The direct yield polarisation for the NLO and NNLO* is increasingly longitudinal in the helicity frame when P_T gets larger. Contrary to what is sometimes claimed in the literature, the prompt J/psi yield polarisation in the CSM is compatible with the experimental data from the CDF collaboration, when one combines the direct yield with a data-driven range for the polarisation of J/psi from chi(c).Comment: Contributed to the 22nd International Conference On Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2011), Annecy, France, May 23 - 28, 2011. 4 pages, 4 figures, uses iopams.sty, iopart12.clo, iopart.cls (included

    A New Method for Multi-Bit and Qudit Transfer Based on Commensurate Waveguide Arrays

    Get PDF
    The faithful state transfer is an important requirement in the construction of classical and quantum computers. While the high-speed transfer is realized by optical-fibre interconnects, its implementation in integrated optical circuits is affected by cross-talk. The cross-talk between densely packed optical waveguides limits the transfer fidelity and distorts the signal in each channel, thus severely impeding the parallel transfer of states such as classical registers, multiple qubits and qudits. Here, we leverage on the suitably engineered cross-talk between waveguides to achieve the parallel transfer on optical chip. Waveguide coupling coefficients are designed to yield commensurate eigenvalues of the array and hence, periodic revivals of the input state. While, in general, polynomially complex, the inverse eigenvalue problem permits analytic solutions for small number of waveguides. We present exact solutions for arrays of up to nine waveguides and use them to design realistic buses for multi-(qu)bit and qudit transfer. Advantages and limitations of the proposed solution are discussed in the context of available fabrication techniques

    Field-induced magnetic reorientation and effective anisotropy of a ferromagnetic monolayer within spin wave theory

    Get PDF
    The reorientation of the magnetization of a ferromagnetic monolayer is calculated with the help of many-body Green's function theory. This allows, in contrast to other spin wave theories, a satisfactory calculation of magnetic properties over the entire temperature range of interest since interactions between spin waves are taken into account. A Heisenberg Hamiltonian plus a second-order uniaxial single-ion anisotropy and an external magnetic field is treated by the Tyablikov (Random Phase Approximation: RPA) decoupling of the exchange interaction term and the Anderson-Callen decoupling of the anisotropy term. The orientation of the magnetization is determined by the spin components \la S^\alpha\ra (α=x,y,z\alpha=x,y,z), which are calculated with the help of the spectral theorem. The knowledge of the orientation angle Θ0\Theta_0 allows a non-perturbative determination of the temperature dependence of the effective second-order anisotropy coefficient. Results for the Green's function theory are compared with those obtained with mean-field theory (MFT). We find significant differences between these approaches.Comment: to appear in Europ.J.Phys.B, 13 pages, 9 figure

    Disentanglement and Decoherence by Open System Dynamics

    Full text link
    The destruction of quantum interference, decoherence, and the destruction of entanglement both appear to occur under the same circumstances. To address the connection between these two phenomena, we consider the evolution of arbitrary initial states of a two-particle system under open system dynamics described by a class of master equations which produce decoherence of each particle. We show that all initial states become separable after a finite time, and we produce the explicit form of the separated state. The result extends and amplifies an earlier result of Di\'osi. We illustrate the general result by considering the case in which the initial state is an EPR state (in which both the positions and momenta of a particle pair are perfectly correlated). This example clearly illustrates how the spreading out in phase space produced by the environment leads to certain disentanglement conditions becoming satisfied.Comment: 15 Page

    Dielectric screening of surface states in a topological insulator

    Full text link
    Hexagonal warping provides an anisotropy to the dispersion curves of the helical Dirac fermions that exist at the surface of a topological insulator. A sub-dominant quadratic in momentum term leads to an asymmetry between conduction and valence band. A gap can also be opened through magnetic doping. We show how these various modifications to the Dirac spectrum change the polarization function of the surface states and employ our results to discuss their effect on the plasmons. In the long wavelength limit, the plasmon dispersion retains its square root dependence on its momentum, q\boldsymbol{q}, but its slope is modified and it can acquire a weak dependence on the direction of q\boldsymbol{q}. Further, we find the existence of several plasmon branches, one which is damped for all values of q\boldsymbol{q}, and extract the plasmon scattering rate for a representative case.Comment: 11 pages, 8 figure

    Hausdorff dimension of boundaries of self-affine tiles in R^n

    Get PDF
    We present a new method to calculate the Hausdorff dimension of a certain class of fractals: boundaries of self-affine tiles. Among the interesting aspects are that even if the affine contraction underlying the iterated function system is not conjugated to a similarity we obtain an upper- and lower-bounds for its Hausdorff dimension. In fact, we obtain the exact value for the dimension if the moduli of the eigenvalues of the underlying affine contraction are all equal (this includes Jordan blocks). The tiles we discuss play an important role in the theory of wavelets. We calculate the dimension for a number of examples
    corecore