4,860 research outputs found

    Signatures of unconventional pairing in near-vortex electronic structure of LiFeAs

    Full text link
    A major question in Fe-based superconductors remains the structure of the pairing, in particular whether it is of unconventional nature. The electronic structure near vortices can serve as a platform for phase-sensitive measurements to answer this question. By solving Bogoliubov-de Gennes equations for LiFeAs, we calculate the energy-dependent local electronic structure near a vortex for different nodeless gap-structure possibilities. At low energies, the local density of states (LDOS) around a vortex is determined by the normal-state electronic structure. However, at energies closer to the gap value, the LDOS can distinguish an anisotropic from a conventional isotropic s-wave gap. We show within our self-consistent calculation that in addition, the local gap profile differs between a conventional and an unconventional pairing. We explain this through admixing of a secondary order parameter within Ginzburg-Landau theory. In-field scanning tunneling spectroscopy near vortices can therefore be used as a real-space probe of the gap structure

    Two-Photon Beatings Using Biphotons Generated from a Two-Level System

    Full text link
    We propose a two-photon beating experiment based upon biphotons generated from a resonant pumping two-level system operating in a backward geometry. On the one hand, the linear optical-response leads biphotons produced from two sidebands in the Mollow triplet to propagate with tunable refractive indices, while the central-component propagates with unity refractive index. The relative phase difference due to different refractive indices is analogous to the pathway-length difference between long-long and short-short in the original Franson interferometer. By subtracting the linear Rayleigh scattering of the pump, the visibility in the center part of the two-photon beating interference can be ideally manipulated among [0, 100%] by varying the pump power, the material length, and the atomic density, which indicates a Bell-type inequality violation. On the other hand, the proposed experiment may be an interesting way of probing the quantum nature of the detection process. The interference will disappear when the separation of the Mollow peaks approaches the fundamental timescales for photon absorption in the detector.Comment: to appear in Phys. Rev. A (2008

    Topological Defects Coupling Smectic Modulations to Intra-unit-cell Nematicity in Cuprate

    Full text link
    We study the coexisting smectic modulations and intra-unit-cell nematicity in the pseudogap states of underdoped Bi2Sr2CaCu2O8+{\delta}. By visualizing their spatial components separately, we identified 2\pi topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large numbers of these topological defects simultaneously with the fluctuations in the intra-unit-cell nematicity revealed strong empirical evidence for a coupling between them. From these observations, we propose a Ginzburg-Landau functional describing this coupling and demonstrate how it can explain the coexistence of the smectic and intra-unit-cell broken symmetries and also correctly predict their interplay at the atomic scale. This theoretical perspective can lead to unraveling the complexities of the phase diagram of cuprate high-critical-temperature superconductors

    Commensurate 4a04a_0 period Charge Density Modulations throughout the Bi2Sr2CaCu2O8+xBi_2Sr_2CaCu_2O_{8+x} Pseudogap Regime

    Full text link
    Theories based upon strong real space (r-space) electron electron interactions have long predicted that unidirectional charge density modulations (CDM) with four unit cell (4a0a_0) periodicity should occur in the hole doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector QAQ_A of the CDM to evolve continuously as if driven primarily by momentum space (k-space) effects. Here we introduce phase resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this new technique reveals a virtually doping independent locking of the local CDM wavevector at ∣Q0∣=2π/4a0|Q_0|=2\pi/4a_0 throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8. These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi surface) based picture of the cuprate CDM but are consistent with strong coupling r-space based theories. Our findings imply that it is the latter that provide the intrinsic organizational principle for the cuprate CDM state

    Spin-Orbit Coupling in LaAlO3_3/SrTiO3_3 interfaces: Magnetism and Orbital Ordering

    Full text link
    The combination of Rashba spin-orbit coupling and electron correlations can induce unusual phenomena in the metallic interface between SrTiO3_3 and LaAlO3_3. We consider effects of Rashba spin-orbit coupling at this interface in the context of the recent observation of anisotropic magnetism. Firstly, we show how Rashba spin-orbit coupling in a system near a band-edge can account for the observed magnetic anisotropy. Secondly, we investigate the coupling between in-plane magnetic-moment anisotropy and nematicity in the form of an orbital imbalance between dxz_{xz} / dyz_{yz} orbitals. We estimate this coupling to be substantial in the low electron density regime. Such an orbital ordering can affect magneto transport

    Sub-monolayer nucleation and growth of complex oxide heterostructures at high supersaturation and rapid flux modulation

    Full text link
    We report on the non-trivial nanoscale kinetics of the deposition of novel complex oxide heterostructures composed of a unit-cell thick correlated metal LaNiO3 and dielectric LaAlO3. The multilayers demonstrate exceptionally good crystallinity and surface morphology maintained over the large number of layers, as confirmed by AFM, RHEED, and synchrotron X-ray diffraction. To elucidate the physics behind the growth, the temperature of the substrate and the deposition rate were varied over a wide range and the results were treated in the framework of a two-layer model. These results are of fundamental importance for synthesis of new phases of complex oxide heterostructures.Comment: 13 pages, 6 figure

    Graphene as an electronic membrane

    Full text link
    Experiments are finally revealing intricate facts about graphene which go beyond the ideal picture of relativistic Dirac fermions in pristine two dimensional (2D) space, two years after its first isolation. While observations of rippling added another dimension to the richness of the physics of graphene, scanning single electron transistor images displayed prevalent charge inhomogeneity. The importance of understanding these non-ideal aspects cannot be overstated both from the fundamental research interest since graphene is a unique arena for their interplay, and from the device applications interest since the quality control is a key to applications. We investigate the membrane aspect of graphene and its impact on the electronic properties. We show that curvature generates spatially varying electrochemical potential. Further we show that the charge inhomogeneity in turn stabilizes ripple formation.Comment: 6 pages, 11 figures. Updated version with new results about the re-hybridization of the electronic orbitals due to rippling of the graphene sheet. The re-hybridization adds the next-to-nearest neighbor hopping effect discussed in the previous version. New reference to recent STM experiments that give support to our theor
    • …
    corecore