92,775 research outputs found

    Creep fatigue life prediction for engine hot section materials (ISOTROPIC)

    Get PDF
    The specific activities summarized include: verification experiments (base program); thermomechanical cycling model; multiaxial stress state model; cumulative loading model; screening of potential environmental and protective coating models; and environmental attack model

    On the General Ericksen-Leslie System: Parodi's Relation, Well-posedness and Stability

    Full text link
    In this paper we investigate the role of Parodi's relation in the well-posedness and stability of the general Ericksen-Leslie system modeling nematic liquid crystal flows. First, we give a formal physical derivation of the Ericksen-Leslie system through an appropriate energy variational approach under Parodi's relation, in which we can distinguish the conservative/dissipative parts of the induced elastic stress. Next, we prove global well-posedness and long-time behavior of the Ericksen-Leslie system under the assumption that the viscosity μ4\mu_4 is sufficiently large. Finally, under Parodi's relation, we show the global well-posedness and Lyapunov stability for the Ericksen-Leslie system near local energy minimizers. The connection between Parodi's relation and linear stability of the Ericksen-Leslie system is also discussed

    Influence of Correlated Hybridization on the Conductance of Molecular Transistors

    Full text link
    We study the spin-1/2 single-channel Anderson impurity model with correlated (occupancy dependent) hybridization for molecular transistors using the numerical renormalization-group method. Correlated hybridization can induce nonuniversal deviations in the normalized zero-bias conductance and, for some parameters, modestly enhance the spin polarization of currents in applied magnetic field. Correlated hybridization can also explain a gate-voltage dependence to the Kondo scale similar to what has been observed in recent experiments.Comment: 4 pages, 5 figure

    A minimal stochastic model for influenza evolution

    Full text link
    We introduce and discuss a minimal individual-based model for influenza dynamics. The model takes into account the effects of specific immunization against viral strains, but also infectivity randomness and the presence of a short-lived strain transcending immunity recently suggested in the literature. We show by simulations that the resulting model exhibits substitution of viral strains along the years, but that their divergence remains bounded. We also show that dropping any of these features results in a drastically different behavior, leading either to the extinction of the disease, to the proliferation of the viral strains, or to their divergence

    Thermalization and temperature distribution in a driven ion chain

    Full text link
    We study thermalization and non-equilibrium dynamics in a dissipative quantum many-body system -- a chain of ions with two points of the chain driven by thermal bath under different temperature. Instead of a simple linear temperature gradient as one expects from the classical heat diffusion process, the temperature distribution in the ion chain shows surprisingly rich patterns, which depend on the ion coupling rate to the bath, the location of the driven ions, and the dissipation rates of the other ions in the chain. Through simulation of the temperature evolution, we show that these unusual temperature distribution patterns in the ion chain can be quantitatively tested in experiments within a realistic time scale.Comment: 5 pages, 5 figure

    Estimating factor models for multivariate volatilities : an innovation expansion method

    Get PDF
    We introduce an innovation expansion method for estimation of factor models for conditional variance (volatility) of a multivariate time series. We estimate the factor loading space and the number of factors by a stepwise optimization algorithm on expanding the "white noise space". Simulation and a real data example are given for illustration

    An MHD Model For Magnetar Giant Flares

    Full text link
    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection (CME) events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806 - 20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 104710^{47} ergs, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806 - 20, SGR 0526-66 and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.Comment: Accepted to Ap
    corecore