23 research outputs found

    Scale Invariance in disordered systems: the example of the Random Field Ising Model

    Full text link
    We show by numerical simulations that the correlation function of the random field Ising model (RFIM) in the critical region in three dimensions has very strong fluctuations and that in a finite volume the correlation length is not self-averaging. This is due to the formation of a bound state in the underlying field theory. We argue that this non perturbative phenomenon is not particular to the RFIM in 3-d. It is generic for disordered systems in two dimensions and may also happen in other three dimensional disordered systems

    Nonequilibrium dynamics of fully frustrated Ising models at T=0

    Full text link
    We consider two fully frustrated Ising models: the antiferromagnetic triangular model in a field of strength, h=HTkBh=H T k_B, as well as the Villain model on the square lattice. After a quench from a disordered initial state to T=0 we study the nonequilibrium dynamics of both models by Monte Carlo simulations. In a finite system of linear size, LL, we define and measure sample dependent "first passage time", trt_r, which is the number of Monte Carlo steps until the energy is relaxed to the ground-state value. The distribution of trt_r, in particular its mean value, , is shown to obey the scaling relation, L2ln(L/L0) \sim L^2 \ln(L/L_0), for both models. Scaling of the autocorrelation function of the antiferromagnetic triangular model is shown to involve logarithmic corrections, both at H=0 and at the field-induced Kosterlitz-Thouless transition, however the autocorrelation exponent is found to be HH dependent.Comment: 7 pages, 8 figure

    Ground state non-universality in the random field Ising model

    Full text link
    Two attractive and often used ideas, namely universality and the concept of a zero temperature fixed point, are violated in the infinite-range random-field Ising model. In the ground state we show that the exponents can depend continuously on the disorder and so are non-universal. However, we also show that at finite temperature the thermal order parameter exponent one half is restored so that temperature is a relevant variable. The broader implications of these results are discussed.Comment: 4 pages 2 figures, corrected prefactors caused by a missing factor of two in Eq. 2., added a paragraph in conclusions for clarit

    Specific-Heat Exponent of Random-Field Systems via Ground-State Calculations

    Full text link
    Exact ground states of three-dimensional random field Ising magnets (RFIM) with Gaussian distribution of the disorder are calculated using graph-theoretical algorithms. Systems for different strengths h of the random fields and sizes up to N=96^3 are considered. By numerically differentiating the bond-energy with respect to h a specific-heat like quantity is obtained, which does not appear to diverge at the critical point but rather exhibits a cusp. We also consider the effect of a small uniform magnetic field, which allows us to calculate the T=0 susceptibility. From a finite-size scaling analysis, we obtain the critical exponents \nu=1.32(7), \alpha=-0.63(7), \eta=0.50(3) and find that the critical strength of the random field is h_c=2.28(1). We discuss the significance of the result that \alpha appears to be strongly negative.Comment: 9 pages, 9 figures, 1 table, revtex revised version, slightly extende

    Degeneracy Algorithm for Random Magnets

    Full text link
    It has been known for a long time that the ground state problem of random magnets, e.g. random field Ising model (RFIM), can be mapped onto the max-flow/min-cut problem of transportation networks. I build on this approach, relying on the concept of residual graph, and design an algorithm that I prove to be exact for finding all the minimum cuts, i.e. the ground state degeneracy of these systems. I demonstrate that this algorithm is also relevant for the study of the ground state properties of the dilute Ising antiferromagnet in a constant field (DAFF) and interfaces in random bond magnets.Comment: 17 pages(Revtex), 8 Postscript figures(5color) to appear in Phys. Rev. E 58, December 1st (1998

    The Nuclear Yukawa Model on a Lattice

    Full text link
    We present the results of the quantum field theory approach to nuclear Yukawa model obtained by standard lattice techniques. We have considered the simplest case of two identical fermions interacting via a scalar meson exchange. Calculations have been performed using Wilson fermions in the quenched approximation. We found the existence of a critical coupling constant above which the model cannot be numerically solved. The range of the accessible coupling constants is below the threshold value for producing two-body bound states. Two-body scattering lengths have been obtained and compared to the non relativistic results.Comment: 15 page

    On the dynamics of the glass transition on Bethe lattices

    Full text link
    The Glauber dynamics of disordered spin models with multi-spin interactions on sparse random graphs (Bethe lattices) is investigated. Such models undergo a dynamical glass transition upon decreasing the temperature or increasing the degree of constrainedness. Our analysis is based upon a detailed study of large scale rearrangements which control the slow dynamics of the system close to the dynamical transition. Particular attention is devoted to the neighborhood of a zero temperature tricritical point. Both the approach and several key results are conjectured to be valid in a considerably more general context.Comment: 56 pages, 38 eps figure

    Thermodynamics and structure of simple liquids in the hyperbolic plane

    Full text link
    We provide a consistent statistical-mechanical treatment for describing the thermodynamics and the structure of fluids embedded in the hyperbolic plane. In particular, we derive a generalization of the virial equation relating the bulk thermodynamic pressure to the pair correlation function and we develop the appropriate setting for extending the integral-equation approach of liquid-state theory in order to describe the fluid structure. We apply the formalism and study the influence of negative space curvature on two types of systems that have been recently considered: Coulombic systems, such as the one- and two-component plasma models, and fluids interacting through short-range pair potentials, such as the hard-disk and the Lennard-Jones models.Comment: 25 pages, 10 Figure

    Random walks and polymers in the presence of quenched disorder

    Full text link
    After a general introduction to the field, we describe some recent results concerning disorder effects on both `random walk models', where the random walk is a dynamical process generated by local transition rules, and on `polymer models', where each random walk trajectory representing the configuration of a polymer chain is associated to a global Boltzmann weight. For random walk models, we explain, on the specific examples of the Sinai model and of the trap model, how disorder induces anomalous diffusion, aging behaviours and Golosov localization, and how these properties can be understood via a strong disorder renormalization approach. For polymer models, we discuss the critical properties of various delocalization transitions involving random polymers. We first summarize some recent progresses in the general theory of random critical points : thermodynamic observables are not self-averaging at criticality whenever disorder is relevant, and this lack of self-averaging is directly related to the probability distribution of pseudo-critical temperatures Tc(i,L)T_c(i,L) over the ensemble of samples (i)(i) of size LL. We describe the results of this analysis for the bidimensional wetting and for the Poland-Scheraga model of DNA denaturation.Comment: 17 pages, Conference Proceedings "Mathematics and Physics", I.H.E.S., France, November 200
    corecore