139 research outputs found
Intensity-intensity correlations as a probe of interferences - under conditions of none in the intensity
The different behaviour of first order interferences and second order
correlations are investigated for the case of two coherently excited atoms. For
intensity measurements this problem is equivalent to Young's double slit
experiment and was investigated in an experiment by Eichmann et al. [Phys. Rev.
Lett. 70, 2359 (1993)] and later analyzed in detail by Itano et al. [Phys. Rev.
A 57, 4176 (1998)]. Our results show that in cases where the intensity
interferences disappear the intensity-intensity correlations can display an
interference pattern with a visibility of up to 100%. The contrast depends on
the polarization selected for the detection and is independent of the strength
of the driving field. The nonclassical nature of the calculated
intensity-intensity correlations is also discussed.Comment: 14 pages, 2 figure
Heralded Entanglement of Arbitrary Degree in Remote Qubits
Incoherent scattering of photons off two remote atoms with a Lambda-level
structure is used as a basic Young-type interferometer to herald long-lived
entanglement of an arbitrary degree. The degree of entanglement, as measured by
the concurrence, is found to be tunable by two easily accessible experimental
parameters. Fixing one of them to certain values unveils an analog to the
Malus' law. An estimate of the variation in the degree of entanglement due to
uncertainties in an experimental realization is given.Comment: published version, 4 pages and 2 figure
Measuring arbitrary-order coherences: Tomography of single-mode multiphoton polarization-entangled states
A scheme is discussed for measuring Nth-order coherences of two orthogonally
polarized light fields in a single spatial mode at very limited experimental
cost. To implement the scheme, the only measurements needed are the Nth-order
intensity moments after the light beam has passed through two quarter-wave
plates, one half-wave plate, and a polarizing beam splitter for specific
settings of the wave plates. It is shown that this method can be applied for
arbitrarily large N. A set of explicit values is given for the settings of the
wave plates, constituting an optimal measurement of the Nth-order coherences
for any N. For Fock states the method introduced here corresponds to a full
state tomography. Applications of the scheme to systems other than polarization
optics are discussed.Comment: 6 pages, 1 figure, 1 table, published versio
Operational determination of multi-qubit entanglement classes via tuning of local operations
We present a physical setup with which it is possible to produce arbitrary
symmetric long-lived multiqubit entangled states in the internal ground levels
of photon emitters, including the paradigmatic GHZ and W states. In the case of
three emitters, where each tripartite entangled state belongs to one of two
well-defined entanglement classes, we prove a one-to-one correspondence between
well-defined sets of experimental parameters, i.e., locally tunable polarizer
orientations, and multiqubit entanglement classes inside the symmetric
subspace.Comment: Improved version. Accepted in Physical Review Letter
- …