133 research outputs found
Operation of transition edge sensors in a resistance locked loop
We propose to operate a superconducting transition edge sensor (TES) using a
different type of biasing, in which the resistance of the TES is kept constant
by means of feedback on the bias voltage and is independent of the incoming
signal power. By combining a large negative electrothermal feedback with a load
independent resistance, this approach can significantly linearise the response
of the detector in the large signal limit. The electrothermal feedback is
enhanced in comparison with the commonly applied voltage biasing, which further
increases the speed of the detector. Furthermore, in frequency domain
multiplexed (FDM) readout, the sinusoidal bias voltages for each TES can be
generated cryogenically with the readout SQUIDs.Comment: 4 pages, 2 figure
Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena Xray observatory
Athena is a space-based X-ray observatory intended for exploration of the hot
and energetic universe. One of the science instruments on Athena will be the
X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer,
based on a large cryogenic imaging array of Transition Edge Sensors (TES) based
microcalorimeters operating at a temperature of 100mK. The imaging array
consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a
field of view with a diameter of of 5 arc minutes. Multiplexed readout of the
cryogenic microcalorimeter array is essential to comply with the cooling power
and complexity constraints on a space craft. Frequency domain multiplexing has
been under development for the readout of TES-based detectors for this purpose,
not only for the X-IFU detector arrays but also for TES-based bolometer arrays
for the Safari instrument of the Japanese SPICA observatory. This paper
discusses the design considerations which are applicable to optimise the
multiplex factor within the boundary conditions as set by the space craft. More
specifically, the interplay between the science requirements such as pixel
dynamic range, pixel speed, and cross talk, and the space craft requirements
such as the power dissipation budget, available bandwidth, and electromagnetic
compatibility will be discussed
Frequency division multiplexing readout of 60 low-noise transition-edge sensor bolometers
We demonstrate multiplexing readout of 60 transition edge sensor (TES) bolometers operating at 90 mK using a frequency division multiplexing readout chain with bias frequencies ranging from 1 to 3.5 MHz and with a typical frequency spacing of 32 kHz. The readout chain starts with a two-stage SQUID amplifier and has a noise level of 9.5 pA/ √{ Hz } . We compare current-voltage curves and noise spectra of TESs measured in a single-pixel mode and in a multiplexing mode. We also map the noise equivalent power (NEP) and the saturation power of the bolometers in both modes, where there are 43 pixels that do not show more than 10% difference in NEP and 5% in saturation power when measured in single pixel and multiplex modes. We have read out a TES with an NEP of 0.45 aW/ √{ Hz } in the multiplexing-mode, which demonstrates the capability of reading out ultra-low noise TES bolometer arrays for space applications
Electrical cross talk of a frequency division multiplexing readout for a transition edge sensor bolometer array
We have characterized and mapped the electrical cross talk (ECT) of a frequency division multiplexing (FDM) system with a transition edge sensor (TES) bolometer array, which is intended for space applications. By adding a small modulation at 120 Hz to the AC bias voltage of one bolometer and measuring the cross talk response in the current noise spectra of the others simultaneously, we have for the first time mapped the ECT level of 61 pixels with a nominal frequency spacing of 32 kHz in a 61 × 61 matrix and a carrier frequency ranging from 1 MHz to 4 MHz. We find that about 94% of the pixels show an ECT level of less than 0.4%. Only the adjacent pixels reach this level, and the ECT for the rest of the pixels is less than 0.1%. We also observe higher ECT levels, up to 10%, between some of the pixels, which have bundled long, parallel coplanar wires connecting TES bolometers to inductor-capacitor filters. In this case, the high mutual inductances dominate. To mitigate this source of ECT, the coplanar wires should be replaced by microstrip wires in the array. Our study suggests that an FDM system can have a relatively low ECT level, e.g., around 0.4% if the frequency spacing is 30 kHz. Our results successfully demonstrate a low electrical cross talk for a space FDM technology
Development of frequency domain multiplexing for the X-ray Integral Field Unit (X-IFU) on the Athena
We are developing the frequency domain multiplexing (FDM) read-out of
transition-edge sensor (TES) microcalorimeters for the X-ray Integral Field
Unit (X-IFU) instrument on board of the future European X-Ray observatory
Athena. The X-IFU instrument consists of an array of 3840 TESs with a
high quantum efficiency (90 \%) and spectral resolution =2.5 eV
7 keV (2800). FDM is currently the baseline readout system
for the X-IFU instrument. Using high quality factor LC filters and room
temperature electronics developed at SRON and low-noise two stage SQUID
amplifiers provided by VTT, we have recently demonstrated good performance with
the FDM readout of Mo/Au TES calorimeters with Au/Bi absorbers. An integrated
noise equivalent power resolution of about 2.0 eV at 1.7 MHz has been
demonstrated with a pixel from a new TES array from NASA/Goddard (GSFC-A2). We
have achieved X-ray energy resolutions 2.5 eV at AC bias frequency at 1.7
MHz in the single pixel read-out. We have also demonstrated for the first time
an X-ray energy resolution around 3.0 eV in a 6 pixel FDM read-out with TES
array (GSFC-A1). In this paper we report on the single pixel performance of
these microcalorimeters under MHz AC bias, and further results of the
performance of these pixels under FDM.Comment: 8 pages, 4 figures, Proceedings of the SPIE Astronomical
Instrumentation "Space Telescopes and Instrumentation 2014: Ultraviolet to
Gamma Ray
- …