513 research outputs found

    The S0_0(0) structure in highly compressed hydrogen and the orientational transition

    Full text link
    A calculation of the rotational S0_0(0) frequencies in high pressure solid para-hydrogen is performed. Convergence of the perturbative series at high density is demonstrated by the calculation of second and third order terms. The results of the theory are compared with the available experimental data to derive the density behaviour of structural parameters. In particular, a strong increase of the value of the lattice constant ratio c/ac/a and of the internuclear distance is determined. Also a decrease of the anisotropic intermolecular potential is observed which is attributed to charge transfer effects. The structural parameters determined at the phase transition may be used to calculate quantum properties of the rotationally ordered phase.Comment: accepted Europhysics Letter

    Spontaneous Magnetization of the O(3) Ferromagnet at Low Temperatures

    Full text link
    We investigate the low-temperature behavior of ferromagnets with a spontaneously broken symmetry O(3) \to O(2). The analysis is performed within the perspective of nonrelativistic effective Lagrangians, where the dynamics of the system is formulated in terms of Goldstone bosons. Unlike in a Lorentz-invariant framework (chiral perturbation theory), where loop graphs are suppressed by two powers of momentum, loops involving ferromagnetic spin waves are suppressed by three momentum powers. The leading coefficients of the low-temperature expansion for the partition function are calculated up to order p10p^{10}. In agreement with Dyson's pioneering microscopic analysis of the cubic ferromagnet, we find that, in the spontaneous magnetization, the magnon-magnon interaction starts manifesting itself only at order T4T^4. The striking difference with respect to the low-temperature properties of the O(3) antiferromagnet is discussed from a unified point of view, relying on the effective Lagrangian technique.Comment: 23 pages, 4 figure

    Nanostratification of optical excitation in self-interacting 1D arrays

    Full text link
    The major assumption of the Lorentz-Lorenz theory about uniformity of local fields and atomic polarization in dense material does not hold in finite groups of atoms, as we reported earlier [A. E. Kaplan and S. N. Volkov, Phys. Rev. Lett., v. 101, 133902 (2008)]. The uniformity is broken at sub-wavelength scale, where the system may exhibit strong stratification of local field and dipole polarization, with the strata period being much shorter than the incident wavelength. In this paper, we further develop and advance that theory for the most fundamental case of one-dimensional arrays, and study nanoscale excitation of so called "locsitons" and their standing waves (strata) that result in size-related resonances and related large field enhancement in finite arrays of atoms. The locsitons may have a whole spectrum of spatial frequencies, ranging from long waves, to an extent reminiscent of ferromagnetic domains, -- to super-short waves, with neighboring atoms alternating their polarizations, which are reminiscent of antiferromagnetic spin patterns. Of great interest is the new kind of "hybrid" modes of excitation, greatly departing from any magnetic analogies. We also study differences between Ising-like near-neighbor approximation and the case where each atom interacts with all other atoms in the array. We find an infinite number of "exponential eigenmodes" in the lossless system in the latter case. At certain "magic" numbers of atoms in the array, the system may exhibit self-induced (but linear in the field) cancellation of resonant local-field suppression. We also studied nonlinear modes of locsitons and found optical bistability and hysteresis in an infinite array for the simplest modes.Comment: 39 pages, 5 figures; v2: Added the Conclusions section, corrected a typo in Eq. (5.3), corrected minor stylistic and grammatical imperfection

    Quantum and Classical Orientational Ordering in Solid Hydrogen

    Full text link
    We present a unified view of orientational ordering in phases I, II, and III of solid hydrogen. Phases II and III are orientationally ordered, while the ordering objects in phase II are angular momenta of rotating molecules, and in phase III the molecules themselves. This concept provides quantitative explanation of the vibron softening, libron and roton spectra, and increase of the IR vibron oscillator strength in phase III. The temperature dependence of the effective charge parallels the frequency shifts of the IR and Raman vibrons. All three quantities are linear in the order parameter.Comment: Replaced with the final text, accepted for publication in PRL. 1 Fig. added. Misc. text revision

    First-Principle Homogenization Theory for Periodic Metamaterials

    Full text link
    We derive from first principles an accurate homogenized description of periodic metamaterials made of magnetodielectric inclusions, highlighting and overcoming relevant limitations of standard homogenization methods. We obtain closed-form expressions for the effective constitutive parameters, pointing out the relevance of inherent spatial dispersion effects, present even in the long-wavelength limit. Our results clarify the limitations of quasi-static homogenization models, restore the physical meaning of homogenized metamaterial parameters and outline the reasons behind magnetoelectric coupling effects that may arise also in the case of center-symmetric inclusions.Comment: 58 pages, 10 figures Phys. Rev. B, in press (2011

    Nuclear Magnetic Relaxation in the Ferrimagnetic Chain Compound NiCu(C_7_H_6_N_2_O_6_)(H_2_O)_3_2H_2_O: Three-Magnon Scattering?

    Full text link
    Recent proton spin-lattice relaxation-time (T_1_) measurements on the ferrimagnetic chain compound NiCu(C_7_H_6_N_2_O_6_)(H_2_O)_3_2H_2_O are explained by an elaborately modified spin-wave theory. We give a strong evidence of the major contribution to 1/T_1_ being made by the three-magnon scattering rather than the Raman one.Comment: J. Phys.: Condens. Matter 16, No. 49, 9023 (2004

    Ювілей Михайла Миколайовича Тарана

    Get PDF
    18 жовтня 2008 р. виповнилося 60 років відомому українському вченому-мінералогу, знаному в світі фахівцю в галузі фізики мінералів, доктору геолого-мінералогічних наук Михайлові Миколайовичу Тарану

    Differential cross sections for muonic atom scattering in solid hydrogenic targets

    Full text link
    The differential cross sections for low-energy muonic hydrogen atom scattering in solid molecular H2_2, D2_2 and T2_2 targets under low pressure have been calculated for various temperatures. The polycrystalline fcc and hcp structure of the solid hydrogenic targets are considered. The Bragg and phonon scattering processes are described using the Debye model of a solid. The calculated cross sections are used for Monte Carlo simulations of the muonic atom slowing down in these targets. They have been successfully applied for a description of the production of the muonic atom beams in the multilayer hydrogenic crystals.Comment: 23 pages, 19 figures, 2 table
    corecore