375 research outputs found

    Stripes Disorder and Correlation lengths in doped antiferromagnets

    Full text link
    For stripes in doped antiferromagnets, we find that the ratio of spin and charge correlation lenghts, ξs/ξc\xi_{s}/\xi_{c}, provide a sharp criterion for determining the dominant form of disorder in the system. If stripes disorder is controlled by topological defects then ξs/ξc1\xi_{s}/\xi_{c}\lesssim 1. In contast, if stripes correlations are disordered primarily by non-topological elastic deformations (i.e., a Bragg-Glass type of disorder) then 1<ξs/ξc41<\xi _{s}/\xi_{c}\lesssim 4 is expected. Therefore, the observation of ξs/ξc4\xi _{s}/\xi_{c}\approx 4 in (LaNd)2xSrxCuO4(LaNd)_{2-x}Sr_{x}CuO_{4} and ξs/ξc3\xi_{s}/\xi _{c}\approx 3 in La2/3Sr1/3NiO4La_{2/3}Sr_{1/3}NiO_{4} invariably implies that the stripes are in a Bragg glass type state, and topological defects are much less relevant than commonly assumed. Expected spectral properties are discussed. Thus, we establish the basis for any theoretical analysis of the experimentally obsereved glassy state in these material.Comment: 4 pages, 2 figure

    Insertion Loss Estimation of EMI Filters in Unmatched Input/Output Impedance System

    Get PDF
    One of the problems in the design of powerline EMI filters is the uncertainty and ambiguity of their source/load impedances which results in breach of expected filter parameters in a real installation. The paper presents a simple technique for prediction of insertion loss limit values of EMI filters working in arbitrary unmatched mains line impedance systems

    Stripes: Why hole rich lines are antiphase domain walls?

    Full text link
    For stripes of hole rich lines in doped antiferromagnets, we investigate the competition between anti-phase and in-phase domain wall ground state configurations. We argue that a phase transition must occure as a function of the electron/hole filling fraction of the domain wall. Due to {\em transverse} kinetic hole fluctuations, empty domain walls are always anti-phase. At arbitrary electron filling fraction (δ\delta ) of the domain wall (and in particular for δ1/4\delta \approx 1/4 as in LaNdSrCuO), it is essential to account also for the transverse magnetic interactions of the electrons and their mobility {\em along} the domain wall. We find that the transition from anti-phase to in-phase stripe domain wall occurs at a critical filling fraction 0.28<δc<0.300.28<\delta_{c}<0.30, for any value of Jt<1/3\frac{J}{t}<{1/3}. We further use our model to estimate the spin-wave velocity in a stripe system. Finally, relate the results of our microscopic model to previous Landau theory approach to stripes.Comment: 11 pages, 3 figure

    Exact Results for 1D Kondo Lattice from Bosonization

    Full text link
    We find a solvable limit to the problem of the 1D electron gas interacting with a lattice of Kondo scattering centers. In this limit, we present exact results for the problems of incommensurate filling, commensurate filling, impurity vacancy states, and the commensurate-incommensurate transition.Comment: 4 pages, two columns, Latex fil

    Incipient order in the t-J model at high temperatures

    Full text link
    We analyze the high-temperature behavior of the susceptibilities towards a number of possible ordered states in the t-J-V model using the high-temperature series expansion. From all diagrams with up to ten edges, reliable results are obtained down to temperatures of order J, or (with some optimism) to J/2. In the unphysical regime, t<J, large superconducting susceptibilities are found, which moreover increase with decreasing temperatures, but for t>J, these susceptibilities are small and decreasing with decreasing temperature; this suggests that the t-J model does not support high-temperature superconductivity. We also find modest evidence of a tendency toward nematic and d-density wave orders. ERRATUM: Due to an error in the calculation, the series for d-wave supeconducting and extended s-wave superconducting orders were incorrect. We recalculate the series and give the replacement figures. In agreement with our earlier findings, we still find no evidence of any strong enhancement of the superconducting susceptibility with decreasing temperature. However, because different Pade approximants diverge from each other at somewhat higher temperatures than we originally found, it is less clear what this implies concerning the presence or absence of high-temperature superconductivity in the t-J model.Comment: 4 pages, 5 eps figures included; ERRATUM 2 pages, 3 eps figures correcting the error in the series for superconducting susceptibilitie

    Topological Excitations of One-Dimensional Correlated Electron Systems

    Full text link
    Properties of low-energy excitations in one-dimensional superconductors and density-wave systems are examined by the bosonization technique. In addition to the usual spin and charge quantum numbers, a new, independently measurable attribute is introduced to describe elementary, low-energy excitations. It can be defined as a number w which determines, in multiple of π\pi, how many times the phase of the order parameter winds as an excitation is transposed from far left to far right. The winding number is zero for electrons and holes with conventional quantum numbers, but it acquires a nontrivial value w=1 for neutral spin-1/2 excitations and for spinless excitations with a unit electron charge. It may even be irrational, if the charge is irrational. Thus, these excitations are topological, and they can be viewed as composite particles made of spin or charge degrees of freedom and dressed by kinks in the order parameter.Comment: 5 pages. And we are not only splitting point

    Hypoxia Enhances Differentiation of Adipose Tissue-Derived Stem Cells toward the Smooth Muscle Phenotype.

    Get PDF
    Smooth muscle differentiated adipose tissue-derived stem cells are a valuable resource for regeneration of gastrointestinal tissues, such as the gut and sphincters. Hypoxia has been shown to promote adipose tissue-derived stem cells proliferation and maintenance of pluripotency, but the influence of hypoxia on their smooth myogenic differentiation remains unexplored. This study investigated the phenotype and contractility of adipose-derived stem cells differentiated toward the smooth myogenic lineage under hypoxic conditions. Oxygen concentrations of 2%, 5%, 10%, and 20% were used during differentiation of adipose tissue-derived stem cells. Real time reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of smooth muscle cells-specific markers, including early marker smooth muscle alpha actin, middle markers calponin, caldesmon, and late marker smooth muscle myosin heavy chain. The specific contractile properties of cells were verified with both a single cell contraction assay and a gel contraction assay. Five percent oxygen concentration significantly increased the expression levels of α-smooth muscle actin, calponin, and myosin heavy chain in adipose-derived stem cell cultures after 2 weeks of induction (p < 0.01). Cells differentiated in 5% oxygen conditions showed greater contraction effect (p < 0.01). Hypoxia influences differentiation of smooth muscle cells from adipose stem cells and 5% oxygen was the optimal condition to generate smooth muscle cells that contract from adipose stem cells

    Transitions from small to large Fermi momenta in a one-dimensional Kondo lattice model

    Full text link
    We study a one-dimensional system that consists of an electron gas coupled to a spin-1/2 chain by Kondo interaction away from half-filling. We show that zero-temperature transitions between phases with "small" and "large" Fermi momenta can be continuous. Such a continuous but Fermi-momentum-changing transition arises in the presence of spin anisotropy, from a Luttinger liquid with a small Fermi momentum to a Kondo-dimer phase with a large Fermi momentum. We have also added a frustrating next-nearest-neighbor interaction in the spin chain to show the possibility of a similar Fermi-momentum-changing transition, between the Kondo phase and a spin-Peierls phase, in the spin isotropic case. This transition, however, appears to involve a region in which the two phases coexist.Comment: The updated version clarifies the definitions of small and large Fermi momenta, the role of anisotropy, and how Kondo interaction affects Luttinger liquid phase. 12 pages, 5 figure

    Local Moments in an Interacting Environment

    Full text link
    We discuss how local moment physics is modified by the presence of interactions in the conduction sea. Interactions in the conduction sea are shown to open up new symmetry channels for the exchange of spin with the localized moment. We illustrate this conclusion in the strong-coupling limit by carrying out a Schrieffer Wolff transformation for a local moment in an interacting electron sea, and show that these corrections become very severe in the approach to a Mott transition. As an example, we show how the Zhang Rice reduction of a two-band model is modified by these new effects.Comment: Latex file with two postscript figures. Revised version, with more fully detailed calculation

    Localized charged states and phase separation near second order phase transition

    Full text link
    Localized charged states and phase segregation are described in the framework of the phenomenological Ginzburg-Landau theory of phase transitions. The Coulomb interactions determines the charge distribution and the characteristic length of the phase separated states. The phase separation with charge segregation becomes possible because of the large dielectric constant and the small density of extra charge in the range of charge localization. The phase diagram is calculated and the energy gain of the phase separated state is estimated. The role of the Coulomb interaction is elucidated
    corecore