237 research outputs found

    Jet Investigations Using the Radial Moment

    Get PDF
    We define the radial moment, , for jets produced in hadron-hadron collisions. It can be used as a tool for studying, as a function of the jet transverse energy and pseudorapidity, radiation within the jet and the quality of a perturbative description of the jet shape. We also discuss how non-perturbative corrections to the jet transverse energy affect .Comment: 14 pages, LaTeX, 6 figure

    General subtraction method for numerical calculation of one-loop QCD matrix elements

    Full text link
    We present a subtraction scheme for eliminating the ultraviolet, soft, and collinear divergences in the numerical calculation of an arbitrary one-loop QCD amplitude with an arbitrary number of external legs. The subtractions consist of local counter terms in the space of the four-dimensional loop momentum. The ultraviolet subtraction terms reproduce MSbar renormalization. The key point in the method for the soft and collinear subtractions is that, although the subtraction terms are defined graph-by-graph and the matrix element is also calculated graph-by-graph, the sum over graphs of the integral of each the subtraction term can be evaluated analytically and provides the well known simple pole structure that arises from subtractions from real emission graphs, but with the opposite sign.Comment: 38 pages, 10 figures, axodraw styl

    Two-Loop Helicity Amplitudes for Quark-Gluon Scattering in QCD and Gluino-Gluon Scattering in Supersymmetric Yang-Mills Theory

    Full text link
    We present the two-loop QCD helicity amplitudes for quark-gluon scattering, and for quark-antiquark annihilation into two gluons. These amplitudes are relevant for next-to-next-to-leading order corrections to (polarized) jet production at hadron colliders. We give the results in the `t Hooft-Veltman and four-dimensional helicity (FDH) variants of dimensional regularization. The transition rules for converting the amplitudes between the different variants are much more intricate than for the previously discussed case of gluon-gluon scattering. Summing our two-loop expressions over helicities and colors, and converting to conventional dimensional regularization, gives results in complete agreement with those of Anastasiou, Glover, Oleari and Tejeda-Yeomans. We describe the amplitudes for 2 to 2 scattering in pure N=1 supersymmetric Yang-Mills theory, obtained from the QCD amplitudes by modifying the color representation and multiplicities, and verify supersymmetry Ward identities in the FDH scheme.Comment: 77 pages. v2: corrected errors in eqs. (3.7) and (3.8) for one-loop assembly; remaining results unaffecte

    All Non-Maximally-Helicity-Violating One-Loop Seven-Gluon Amplitudes in N=4 Super-Yang-Mills Theory

    Full text link
    We compute the non-MHV one-loop seven-gluon amplitudes in N=4 super-Yang-Mills theory, which contain three negative-helicity gluons and four positive-helicity gluons. There are four independent color-ordered amplitudes, (- - - + + + +), (- - + - + + +), (- - + + -+ +) and (- + - + - + +). The MHV amplitudes containing two negative-helicity and five positive-helicity gluons were computed previously, so all independent one-loop seven-gluon helicity amplitudes are now known for this theory. We present partial information about an infinite sequence of next-to-MHV one-loop helicity amplitudes, with three negative-helicity and n-3 positive-helicity gluons, and the color ordering (- - - + + ... + +); we give a new coefficient of one class of integral functions entering this amplitude. We discuss the twistor-space properties of the box-integral-function coefficients in the amplitudes, which are quite simple and suggestive.Comment: 54 pages, v3 minor correction

    Three-jet cross sections in hadron-hadron collisions at next-to-leading order

    Get PDF
    We present a new QCD event generator for hadron collider which can calculate one-, two- and three-jet cross sections at next-to-leading order accuracy. In this letter we study the transverse energy spectrum of three-jet hadronic events using the kT algorithm. We show that the next-to-leading order correction significantly reduces the renormalization and factorization scale dependence of the three-jet cross section.Comment: 4 pages, 4 figures, REVTEX

    Hepta-Cuts of Two-Loop Scattering Amplitudes

    Full text link
    We present a method for the computation of hepta-cuts of two loop scattering amplitudes. Four dimensional unitarity cuts are used to factorise the integrand onto the product of six tree-level amplitudes evaluated at complex momentum values. Using Gram matrix constraints we derive a general parameterisation of the integrand which can be computed using polynomial fitting techniques. The resulting expression is further reduced to master integrals using conventional integration by parts methods. We consider both planar and non-planar topologies for 2 to 2 scattering processes and apply the method to compute hepta-cut contributions to gluon-gluon scattering in Yang-Mills theory with adjoint fermions and scalars.Comment: 37 pages, 6 figures. version 2 : minor updates, published versio

    Next-to-Leading Order Calculation of Four-Jet Shape Variables

    Full text link
    We present the next-to-leading order calculation of two four-jet event shape variables, the D parameter and acoplanarity differential distributions. We find large, more than 100% radiative corrections. The theoretical prediction for the D parameter is compared to L3 data obtained at the Z peak and corrected to hadron level.Comment: 11 pages, latex with aps, epsf, rotate styles 3 tables, 3 figures typo in eq. 10 corrected, note and reference added, introduction revise

    Subtraction terms at NNLO

    Full text link
    Perturbative calculations at next-to-next-to-leading order for multi-particle final states require a method to cancel infrared singularities. I discuss the subtraction method at NNLO. As a concrete example I consider the leading-colour contributions to e+ e- --> 2 jets. This is the simplest example which exhibits all essential features. For this example, explicit subtraction terms are given, which approximate the four-parton and three-parton final states in all double and single unresolved limits, such that the subtracted matrix elements can be integrated numerically.Comment: 41 page

    Next-to-next-to-leading logarithmic corrections at small transverse momentum in hadronic collisions

    Get PDF
    We study the region of small transverse momenta in qqbar- and gg-initiated processes with no colored particle detected in the final state. We present the universal expression of the O(alpha_s^2) logarithmically enhanced contributions up to next-to-next-to-leading logarithmic accuracy. From there we extract the coefficients that allow the resummation of the large logarithmic contributions. We find that the coefficient known in the literature as B^{(2)} is process dependent, since it receives a hard contamination from the one loop correction to the leading order subprocess. We present the general result of B^{(2)} for both quark and gluon channels. In particular, in the case of Higgs production, this result will be relevant to improve the matching between resummed predictions and fixed order calculations.Comment: LaTeX, 8 pages. Few typos corrected, particularly Eq.(25). Two references added, to be published in PR

    Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections

    Full text link
    We present in detail the calculation of the O(alpha_s^3) inclusive total cross section for the process pp -> t-tbar-h, in the Standard Model, at the CERN Large Hadron Collider with center-of-mass energy sqrt(s_H)=14 TeV. The calculation is based on the complete set of virtual and real O(alpha_s) corrections to the parton level processes q-qbar -> t-tbar-h and gg -> t-tbar-h, as well as the tree level processes (q,qbar)g -> t-tbar-h-(q,qbar). The virtual corrections involve the computation of pentagon diagrams with several internal and external massive particles, first encountered in this process. The real corrections are computed using both the single and the two cutoff phase space slicing method. The next-to-leading order QCD corrections significantly reduce the renormalization and factorization scale dependence of the Born cross section and moderately increase the Born cross section for values of the renormalization and factorization scales above m_t.Comment: 70 pages, 12 figures, RevTeX4: one word changed in the abstract, one sentence reworded in the introduction. To appear in Phys. Rev.
    • …
    corecore