5 research outputs found

    Anomalous in-plane magnetoresistance of electron-doped cuprate La2−xCexCuO4±δ

    Get PDF
    We report systematic in-plane magnetoresistance measurements on the electron-doped cuprate La2−xCexCuO4±δ thin films as a function of Ce doping and oxygen content in the magnetic field up to 14T. A crossover from negative to positive magnetoresistance occurs between the doping level x = 0.07 and 0.08. Above x = 0.08, the positive magnetoresistance effect appears, and is almost indiscernible at x = 0.15. By tuning the oxygen content, the as-grown samples show negative magnetoresistance effect, whereas the optimally annealed ones display positive magnetoresistance effect at the doping level x = 0.15. Intriguingly, a linear-field dependence of in-plane magnetoresistance is observed at the underdoping level x = 0.06, the optimal doping level x = 0.1 and slightly overdoping level x = 0.11. These anomalies of in-plane magnetoresistance may be related to the intrinsic inhomogeneity in the cuprates, which is discussed in the framework of network model

    Anomalous magnetoresistance in the spinel superconductor LiTi2O4

    Get PDF
    LiTi2O4 is a unique compound in that it is the only known spinel oxide superconductor. The lack of high quality single crystals has thus far prevented systematic investigations of its transport properties. Here we report a careful study of transport and tunnelling spectroscopy in epitaxial LiTi2O4 thin films. An unusual magnetoresistance is observed which changes from nearly isotropic negative to prominently anisotropic positive as the temperature is decreased. We present evidence that shows that the negative magnetoresistance likely stems from the suppression of local spin fluctuations or spin-orbit scattering centres. The positive magnetoresistance suggests the presence of an orbital-related state, also supported by the fact that the superconducting energy gap decreases as a quadratic function of magnetic field. These observations indicate that the spin-orbital fluctuations play an important role in LiTi2O4 in a manner similar to high-temperature superconductors

    Rate Constant for the Reaction C<sub>2</sub>H<sub>5</sub> + HBr → C<sub>2</sub>H<sub>6</sub> + Br

    No full text
    RRKM theory has been employed to analyze the kinetics of the title reaction, in particular, the once-controversial negative activation energy. Stationary points along the reaction coordinate were characterized with coupled cluster theory combined with basis set extrapolation to the complete basis set limit. A shallow minimum, bound by 9.7 kJ mol<sup>–1</sup> relative to C<sub>2</sub>H<sub>5</sub> + HBr, was located, with a very small energy barrier to dissociation to Br + C<sub>2</sub>H<sub>6</sub>. The transition state is tight compared to the adduct. The influence of vibrational anharmonicity on the kinetics and thermochemistry of the title reaction were explored quantitatively. With adjustment of the adduct binding energy by ∼4 kJ mol<sup>–1</sup>, the computed rate constants may be brought into agreement with most experimental data in the literature, including new room-temperature results described here. There are indications that at temperatures above those studied experimentally, the activation energy may switch from negative to positive

    Long non-coding RNA CHCHD4P4 promotes epithelial-mesenchymal transition and inhibits cell proliferation in calcium oxalate-induced kidney damage

    No full text
    <div><p>Kidney stone disease is a major cause of chronic renal insufficiency. The role of long non-coding RNAs (lncRNAs) in calcium oxalate-induced kidney damage is unclear. Therefore, we aimed to explore the roles of lncRNAs in glyoxylate-exposed and healthy mouse kidneys using microarray technology and bioinformatics analyses. A total 376 mouse lncRNAs were differentially expressed between the two groups. Using BLAST, 15 lncRNA homologs, including AU015836 and CHCHD4P4, were identified in mice and humans. The AU015836 expression in mice exposed to glyoxylate and the CHCHD4P4 expression in human proximal tubular epithelial (HK-2) cells exposed to calcium oxalate monohydrate were analyzed, and both lncRNAs were found to be upregulated in response to calcium oxalate. To further evaluate the effects of CHCHD4P4 on the cell behavior, we constructed stable CHCHD4P4-overexpressing and CHCHD4P4-knockdown HK-2 cells. The results showed that CHCHD4P4 inhibited cell proliferation and promoted the epithelial-mesenchymal transition in kidney damage and fibrosis caused by calcium oxalate crystallization and deposition. The silencing of CHCHD4P4 reduced the kidney damage and fibrosis and may thus be a potential molecular target for the treatment of kidney stones.</p></div

    A conducting nano-filament (CNF) network as a precursor to the origin of superconductivity in electron-doped copper oxides

    No full text
    Emergency of superconductivity at the instabilities of antiferromagnetism has been widely recognized in unconventional superconductors. In copper-oxide superconductors, spin fluctuations play a predominant role in electron pairing with electron dopants yet composite orders veil the nature of superconductivity for hole-doped family. However, in electron-doped copper oxide superconductors (cuprates) the AFM critical end point is still in controversy for different probes, demonstrating high sensitivity to oxygen content. Here, by carefully tuning the oxygen content, a systematic study of the Hall signal and magnetoresistivity up to 58 Tesla on LCCO thin films identifies two characteristic temperatures. The former is quite robust, whereas the latter becomes flexible with increasing magnetic field, thereby linking respectively to two- and three-dimensional AFM, evident from the multidimensional phase diagram as a function of oxygen and Ce dopants. A rigorous theoretical analysis of the presented data suggest the existence of conductive nano-filamentary structures that effectively corroborate all previously reported field studies. The new findings provide a uniquely consistent alternative picture in understanding the interactions between AFM and superconductivity in electron-doped cuprates and offer a consolidating interpretation to the pioneering scaling law in cuprates recently established by Bozovic et al. (Nature, 2016
    corecore