13,053 research outputs found

    Charge dynamics in thermally and doping induced insulator-metal transitions of (Ti1-xVx)2O3

    Full text link
    Charge dynamics of (Ti1-xVx)2O3 with x=0-0.06 has been investigated by measurements of charge transport and optical conductivity spectra in a wide temperature range of 2-600K with the focus on the thermally and doping induced insulator-metal transitions (IMTs). The optical conductivity peaks for the interband transitions in the 3d t2g manifold are observed in the both insulating and metallic states, while their large variation (by ~0.4 eV) with change of temperature and doping level scales with that of the Ti-Ti dimer bond length, indicating the weakened singlet bond in the course of IMTs. The thermally and V-doping induced IMTs are driven with the increase in carrier density by band-crossing and hole-doping, respectively, in contrast to the canonical IMT of correlated oxides accompanied by the whole collapse of the Mott gap.Comment: 4 pages, 4 figure

    Distribution of Faraday Rotation Measure in Jets from Active Galactic Nuclei II. Prediction from our Sweeping Magnetic Twist Model for the Wiggled Parts of AGN Jets and Tails

    Full text link
    Distributions of Faraday rotation measure (FRM) and the projected magnetic field derived by a 3-dimensional simulation of MHD jets are investigated based on our "sweeping magnetic twist model". FRM and Stokes parameters were calculated to be compared with radio observations of large scale wiggled AGN jets on kpc scales. We propose that the FRM distribution can be used to discuss the 3-dimensional structure of magnetic field around jets and the validity of existing theoretical models, together with the projected magnetic field derived from Stokes parameters. In the previous paper, we investigated the basic straight part of AGN jets by using the result of a 2-dimensional axisymmetric simulation. The derived FRM distribution has a general tendency to have a gradient across the jet axis, which is due to the toroidal component of the magnetic field generated by the rotation of the accretion disk. In this paper, we consider the wiggled structure of the AGN jets by using the result of a 3-dimensional simulation. Our numerical results show that the distributions of FRM and the projected magnetic field have a clear correlation with the large scale structure of the jet itself, namely, 3-dimensional helix. Distributions, seeing the jet from a certain direction, show a good matching with those in a part of 3C449 jet. This suggests that the jet has a helical structure and that the magnetic field (especially the toroidal component) plays an important role in the dynamics of the wiggle formation because it is due to a current-driven helical kink instability in our model.Comment: Accepted for publication in Ap

    Recent Advances in Percutaneous Cardioscopy

    Get PDF
    Percutaneous cardioscopy, using high-resolution fiberoptic imaging, enables direct visualization of the cardiac interior, thereby enabling macroscopic pathological diagnosis. Percutaneous cardioscopy has demonstrated that the endocardial surface exhibits various colors characteristic of different heart diseases. This imaging modality can now be used for evaluation of the severity of myocardial ischemia, and staging of myocarditis. Myocardial blood flow recovery induced by vasodilating agents or percutaneous coronary interventions can be clearly visualized. Morphological and functional changes in the cardiac valves can also be evaluated. Cardioscope-guided endomyocardial biopsy enables pin-point biopsy of the diseased myocardium. Recently, dye-image cardioscopy and fluorescence cardioscopy were developed for evaluation of the subendocardial microcirculation. Cardioscope-guided intracardiac therapies such as myotomy, myectomy, valvulotomy, and transendocardial angiogenic and myogenic therapy have been trialed using animal models in anticipation of future clinical applications. Percutaneous cardioscopy has the potential to contribute to our understanding of heart disease, and to assist in guidance for intracardiac therapies

    Bandwidth-disorder phase diagram of half doped layered manganites

    Full text link
    Phase diagrams in the plane of rAr_A (the average ionic radius, related to one-electron bandwidth WW) and σ2\sigma^2 (the ionic radius variance, measuring the quenched disorder), or ``bandwidth-disorder phase diagrams'', have been established for perovskite manganites, with three-dimensional (3DD) Mn-O network. Here we establish the intrinsic bandwidth-disorder phase diagram of half-doped layered manganites with the two-dimensional (2DD) Mn-O network, examining in detail the ``mother state'' of the colossal magnetoresistance (CMR) phenomenon in crystals without ferromagnetic instability. The consequences of the reduced dimensionality, from 3DD to 2DD, on the order-disorder phenomena in the charge-orbital sectors are also highlighted.Comment: REVTeX 4 style; 5 pages, 4 figure

    Linear-response theory of the longitudinal spin Seebeck effect

    Full text link
    We theoretically investigate the longitudinal spin Seebeck effect, in which the spin current is injected from a ferromagnet into an attached nonmagnetic metal in a direction parallel to the temperature gradient. Using the fact that the phonon heat current flows intensely into the attached nonmagnetic metal in this particular configuration, we show that the sign of the spin injection signal in the longitudinal spin Seebeck effect can be opposite to that in the conventional transverse spin Seebeck effect when the electron-phonon interaction in the nonmagnetic metal is sufficiently large. Our linear-response approach can explain the sign reversal of the spin injection signal recently observed in the longitudinal spin Seebeck effect.Comment: Proc. of ICM 2012 (Accepted for publication in J. Korean Phys. Soc.), typos correcte

    Distribution of Faraday Rotation Measure in Jets from Active Galactic Nuclei I. Prediction from our Sweeping Magnetic Twist Model

    Full text link
    Using the numerical data of MHD simulation for AGN jets based on our ``sweeping magnetic twist model'', we calculated the Faraday rotation measure (FRM) and the Stokes parameters to compare with observations. We propose that the FRM distribution can be used to discuss the 3-dimensional structure of magnetic field around jets, together with the projected magnetic field derived from the Stokes parameters. In the present paper, we supposed the basic straight part of AGN jet, and used the data of axisymmetric simulation. The FRM distribution we derived has a general tendency to have gradient across the jet axis, which is due to the toroidal component of the helical magnetic field generated by the rotation of the accretion disk. This kind of gradient in the FRM distribution is actually observed in some AGN jets (e.g. Asada et al. 2002), which suggests helical magnetic field around the jets and thus supports our MHD model. Following this success, we are now extending our numerical observation to the wiggled part of the jets using the data of 3-dimensional simulation based on our model in the following paper.Comment: Accepted for publication in Ap

    Asymmetric Supernovae from Magneto-Centrifugal Jets

    Full text link
    Strong toroidal magnetic fields generated in stellar collapse can generate magneto-centrifugal jets in analogy to those found in simulations of black hole accretion and explain why all core collapse supernovae are found to be substantially asymmetric and predominantly bi-polar. We describe two phases: the initial LeBlanc-Wilson jet and a subsequent protopulsar or toroidal jet that propagates at about the core escape velocity. The jets will produce bow shocks that tend to expel matter, including iron and silicon, into equatorial tori, accounting for observations of the element distribution in Cas A. A magnetic ``switch'' mechanism may apply in instances of low density and large magnetic field with subsequent increase in the speed and collimation of the toroidal jet, depositing relatively little momentum. The result could be enough infall to form a black hole with a third, highly relativistic jet that could catch up to the protopulsar jet after it has emerged from the star. The interaction of these two jets could generate internal shocks and explain the presence of iron lines in the afterglow. Recent estimates that typical gamma-ray burst energy is about 3x10^50 erg imply either a very low efficiency for conversion of rotation into jets, or a rather rapid turnoff of the jet process even though the black hole still rotates rapidly. Magnetars and ``hypernovae'' might arise in an intermediate parameter regime of energetic jets that yield larger magnetic fields and provide more energy than the routine case, but that are not so tightly collimated that they yield failed supernova. (slightly abridged)Comment: AASTeX, 29 pages, 2 postscript figures, accepted by ApJ, November 20, 200

    Coexistence of long-ranged charge and orbital order and spin-glass state in single-layered manganites with weak quenched disorder

    Full text link
    The relationship between orbital and spin degrees of freedom in the single-crystals of the hole-doped Pr1−x_{1-x}Ca1+x_{1+x}MnO4_4, 0.3 ≤\leq xx ≤\leq 0.7, has been investigated by means of ac-magnetometry and charge transport. Even though there is no cation ordering on the AA-site, the quenched disorder is extremely weak in this system due to the very similar ionic size of Pr3+^{3+} and Ca2+^{2+}. A clear asymmetric response of the system to the under- (respective over-) hole doping was observed. The long-ranged charge-orbital order established for half doping (xx=0.5) subsists in the over-doping case (xx >> 0.5), albeit rearranged to accommodate the extra holes introduced in the structure. The charge-orbital order is however destabilized by the presence of extra localized electrons (under-doping, xx << 0.5), leading to its disappearance below xx=0.35. We show that in an intermediate under-doped region, with 0.35 ≤\leq xx << 0.5, the ``orbital-master spin-slave'' relationship commonly observed in half-doped manganites does not take place. The long-ranged charge-orbital order is not accompanied by an antiferromagnetic transition at low temperatures, but by a frustrated short-ranged magnetic state bringing forth a spin-glass phase. We discuss in detail the nature and origin of this spin-glass state, which, as in the half-doped manganites with large quenched disorder, is not related to the macroscopic phase separation observed in crystals with minor defects or impurities.Comment: EPL style; 6 pages, 5 figure
    • …
    corecore