84,164 research outputs found

    Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy

    Get PDF
    Differential scanning calorimetry (DSC) was used to determine the thermodynamic functions of the undercooled liquid and the amorphous phase with respect to the crystalline state of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5bulk metallic glass forming alloy. The specific heat capacities of this alloy in the undercooled liquid, the amorphous state and the crystal were determined. The differences in enthalpy, āˆ†H, entropy, āˆ†S, and Gibbs free energy, āˆ†G, between crystal and the undercooled liquid were calculated using the measured specific heat capacity data as well as the heat of fusion. The results indicate that the Gibbs free energy difference between metastable undercooled liquid and crystalline solid, āˆ†G, stays small compared to conventional metallic glass forming alloys even for large undercoolings. Furthermore, the Kauzmann temperature, TK, where the entropy of the undercooled liquid equals to that of the crystal, was determined to be 560 K. The Kauzmann temperature is compared with the experimentally observed rate-dependent glass transition temperature, Tg. Both onset and end temperatures of the glass transition depend linearly on the logarithm of the heating rate based on the DSC experiments. Those characteristic temperatures for the kinetically observed glass transition become equal close to the Kauzmann temperature in this alloy, which suggests an underlying thermodynamic glass transition as a lower bound for the kinetically observed freezing process

    Tunable subpicosecond electron bunch train generation using a transverse-to-longitudinal phase space exchange technique

    Full text link
    We report on the experimental generation of a train of subpicosecond electron bunches. The bunch train generation is accomplished using a beamline capable of exchanging the coordinates between the horizontal and longitudinal degrees of freedom. An initial beam consisting of a set of horizontally-separated beamlets is converted into a train of bunches temporally separated with tunable bunch duration and separation. The experiment reported in this Letter unambiguously demonstrates the conversion process and its versatility.Comment: 4 pages, 5 figures, 1 table; accepted for publication in PR

    Parental Motivation in Family Farm Intergenerational Transfers

    Get PDF
    An intergenerational transfer model incorporating both altruism and exchange is presented for family farm transfers. A simulation study is conducted to test parental motivation in intergenerational transfers of family farm businesses. Results indicated that family farm intergenerational transfers are altruistically motivated.Family Farms, Intergenerational Transfer, Family Farm Succession, Consumer/Household Economics, Farm Management, Q10, Q12,

    Experimental determination of a timeā€“temperature-transformation diagram of the undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy using the containerless electrostatic levitation processing technique

    Get PDF
    High temperature high vacuum electrostatic levitation was used to determine the complete timeā€“temperatureā€“transformation (TTT) diagram of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass forming alloy in the undercooled liquid state. This is the first report of experimental data on the crystallization kinetics of a metallic system covering the entire temperature range of the undercooled melt down to the glass transition temperature. The measured TTT diagram exhibits the expected "C" shape. Existing models that assume polymorphic crystallization cannot satisfactorily explain the experimentally obtained TTT diagram. This originates from the complex crystallization mechanisms that occur in this bulk glass-forming system, involving large composition fluctuations prior to crystallization as well as phase separation in the undercooled liquid state below 800 K

    Parametric Representation for the Multisoliton Solution of the Camassa-Holm Equation

    Full text link
    The parametric representation is given to the multisoliton solution of the Camassa-Holm equation. It has a simple structure expressed in terms of determinants. The proof of the solution is carried out by an elementary theory of determinanats. The large time asymptotic of the solution is derived with the fomula for the phase shift. The latter reveals a new feature when compared with the one for the typical soliton solutions. The peakon limit of the phase shift ia also considered, showing that it reproduces the known result.Comment: 14 page

    Metallic glass formation in highly undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 during containerless electrostatic levitation processing

    Get PDF
    Various sample sizes of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 with masses up to 80 mg were undercooled below Tg (the glass transition temperature) while electrostatically levitated. The final solidification product of the sample was determined by x-ray diffraction to have an amorphous phase. Differential scanning calorimetry was used to confirm the absence of crystallinity in the processes sample. The amorphous phase could be formed only after heating the samples above the melting temperature for extended periods of time in order to break down and dissolve oxides or other contaminants which would otherwise initiate heterogeneous nucleation of crystals. Noncontact pyrometry was used to monitor the sample temperature throughout processing. The critical cooling rate required to avoid crystallization during solidification of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy fell between 0.9 and 1.2 K/s

    Multimodal Sensor Fusion In Single Thermal image Super-Resolution

    Full text link
    With the fast growth in the visual surveillance and security sectors, thermal infrared images have become increasingly necessary ina large variety of industrial applications. This is true even though IR sensors are still more expensive than their RGB counterpart having the same resolution. In this paper, we propose a deep learning solution to enhance the thermal image resolution. The following results are given:(I) Introduction of a multimodal, visual-thermal fusion model that ad-dresses thermal image super-resolution, via integrating high-frequency information from the visual image. (II) Investigation of different net-work architecture schemes in the literature, their up-sampling methods,learning procedures, and their optimization functions by showing their beneficial contribution to the super-resolution problem. (III) A bench-mark ULB17-VT dataset that contains thermal images and their visual images counterpart is presented. (IV) Presentation of a qualitative evaluation of a large test set with 58 samples and 22 raters which shows that our proposed model performs better against state-of-the-arts

    Hemispherical total emissivity and specific heat capacity of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts

    Get PDF
    High-temperature high-vacuum electrostatic levitation (HTHVESL) and differential scanning calorimetry (DSC) were combined to determine the hemispherical total emissivity epsilon T, and the specific heat capacity cp, of the undercooled liquid and throughout the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass forming alloy. The ratio of cp/epsilon T as a function of undercooling was determining from radiative cooling curves measured in the HTHVESL. Using specific heat capacity data obtained by DSC investigations close to the glass transition and above the melting point, epsilon T and cp were separated and the specific heat capacity of the whole undercooled liquid region was determined. Furthermore, the hemispherical total emissivity of the liquid was found to be about 0.22 at 980 K. On undercooling the liquid, the emissivity decreases to approximately 0.18 at about 670 K, where the undercooled liquid starts to freeze to a glass. No significant changes of the emissivity are observed as the alloy undergoes the glass transition

    Kinetic theory and turbulent discontinuities

    Get PDF
    Shock tube discontinuities were used to test and extend a kinetic theory of turbulence. In shock wave and contact surface fluctuations, coherent phenomena were found which provide new support for the microscopic nonempirical approach to turbulent systems, especially those with boundary layer-like instabilities
    • ā€¦
    corecore