787 research outputs found

    Adaptive Covariance Estimation with model selection

    Get PDF
    We provide in this paper a fully adaptive penalized procedure to select a covariance among a collection of models observing i.i.d replications of the process at fixed observation points. For this we generalize previous results of Bigot and al. and propose to use a data driven penalty to obtain an oracle inequality for the estimator. We prove that this method is an extension to the matricial regression model of the work by Baraud

    Femtosecond Spectrotemporal Magneto-Optics

    Get PDF
    A new method to measure and analyze the time and spectrally resolved polarimetric response of magnetic materials is presented. It allows us to study the ultrafast magnetization dynamics of a CoPt3 ferromagnetic film. The analysis of the pump-induced rotation and ellipticity detected by a broad spectrum probe beam shows that magneto-optical signals predominantly reflect the spin dynamics in ferromagnets

    A large sample of calibration stars for Gaia: log g from Kepler and CoRoT

    Full text link
    Asteroseismic data can be used to determine surface gravities with precisions of < 0.05 dex by using the global seismic quantities Deltanu and nu_max along with Teff and [Fe/H]. Surface gravity is also one of the four stellar properties to be derived by automatic analyses for 1 billion stars from Gaia data (workpackage GSP_Phot). We explore seismic data from MS F, G, K stars (solar-like stars) observed by Kepler as a potential calibration source for methods that Gaia will use for object characterisation (log g). We calculate log g for bright nearby stars for which radii and masses are known, and using their global seismic quantities in a grid-based method, we determine an asteroseismic log g to within 0.01 dex of the direct calculation, thus validating the accuracy of our method. We find that errors in Teff and mainly [Fe/H] can cause systematic errors of 0.02 dex. We then apply our method to a list of 40 stars to deliver precise values of surface gravity, i.e. sigma < 0.02 dex, and we find agreement with recent literature values. Finally, we explore the precision we expect in a sample of 400+ Kepler stars which have their global seismic quantities measured. We find a mean uncertainty (precision) on the order of <0.02 dex in log g over the full explored range 3.8 < log g < 4.6, with the mean value varying only with stellar magnitude (0.01 - 0.02 dex). We study sources of systematic errors in log g and find possible biases on the order of 0.04 dex, independent of log g and magnitude, which accounts for errors in the Teff and [Fe/H] measurements, as well as from using a different grid-based method. We conclude that Kepler stars provide a wealth of reliable information that can help to calibrate methods that Gaia will use, in particular, for source characterisation with GSP_Phot where excellent precision (small uncertainties) and accuracy in log g is obtained from seismic data.Comment: Accepted MNRAS, 15 pages (10 figures and 3 tables), v2=some rewording of two sentence

    Size-Dependent Surface Plasmon Dynamics in Metal Nanoparticles

    Full text link
    We study the effect of Coulomb correlations on the ultrafast optical dynamics of small metal particles. We demonstrate that a surface-induced dynamical screening of the electron-electron interactions leads to quasiparticle scattering with collective surface excitations. In noble-metal nanoparticles, it results in an interband resonant scattering of d-holes with surface plasmons. We show that this size-dependent many-body effect manifests itself in the differential absorption dynamics for frequencies close to the surface plasmon resonance. In particular, our self-consistent calculations reveal a strong frequency dependence of the relaxation, in agreement with recent femtosecond pump-probe experiments.Comment: 8 pages + 4 figures, final version accepted to PR

    Synthesis and characterization of core-shell structure silica-coated Fe29.5Ni70.5 nanoparticles

    Full text link
    In view of potential applications of magnetic particles in biomedicine and electromagnetic devices, we made use of the classical Stober method base-catalysed hydrolysis and condensation of tetraethoxysilane (TEOS) to encapsulate FeNi nanoparticles within a silica shell. An original stirring system under high power ultrasounds made possible to disperse the otherwise agglomerated particles. Sonication guaranteed particles to remain dispersed during the Stober synthesis and also improved the efficiency of the method. The coated particles are characterized by electron microscopy (TEM) and spectroscopy (EDX) showing a core-shell structure with a uniform layer of silica. Silica-coating does not affect the core magnetic properties. Indeed, all samples are ferromagnetic at 77 K and room temperature and the Curie point remains unchanged. Only the coercive force shows an unexpected non-monotonous dependence on silica layer thickness.Comment: Regular paper submited to international peer-reveiwed journa
    • …
    corecore