7,390 research outputs found
Mathematical Foundations of Consciousness
We employ the Zermelo-Fraenkel Axioms that characterize sets as mathematical
primitives. The Anti-foundation Axiom plays a significant role in our
development, since among other of its features, its replacement for the Axiom
of Foundation in the Zermelo-Fraenkel Axioms motivates Platonic
interpretations. These interpretations also depend on such allied notions for
sets as pictures, graphs, decorations, labelings and various mappings that we
use. A syntax and semantics of operators acting on sets is developed. Such
features enable construction of a theory of non-well-founded sets that we use
to frame mathematical foundations of consciousness. To do this we introduce a
supplementary axiomatic system that characterizes experience and consciousness
as primitives. The new axioms proceed through characterization of so- called
consciousness operators. The Russell operator plays a central role and is shown
to be one example of a consciousness operator. Neural networks supply striking
examples of non-well-founded graphs the decorations of which generate
associated sets, each with a Platonic aspect. Employing our foundations, we
show how the supervening of consciousness on its neural correlates in the brain
enables the framing of a theory of consciousness by applying appropriate
consciousness operators to the generated sets in question
- …