497 research outputs found
Spin injection in Silicon at zero magnetic field
In this letter, we show efficient electrical spin injection into a SiGe based
\textit{p-i-n} light emitting diode from the remanent state of a
perpendicularly magnetized ferromagnetic contact. Electron spin injection is
carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting
a strong out-of-plane anisotropy. The electrons spin polarization is then
analysed through the circular polarization of emitted light. All the light
polarization measurements are performed without an external applied magnetic
field \textit{i.e.} in remanent magnetic states. The light polarization as a
function of the magnetic field closely traces the out-of-plane magnetization of
the Co/Pt injector. We could achieve a circular polarization degree of the
emitted light of 3 % at 5 K. Moreover this light polarization remains almost
constant at least up to 200 K.Comment: accepted in AP
CO and C_2 Absorption Toward W40 IRS 1a
The H II region W40 harbors a small group of young, hot stars behind roughly
9 magnitudes of visual extinction. We have detected gaseous carbon monoxide
(CO) and diatomic carbon (C_2) in absorption toward the star W40 IRS 1a. The
2-0 R0, R1, and R2 lines of 12CO at 2.3 micron were measured using the CSHELL
on the NASA IR Telescope Facility (with upper limits placed on R3, R4, and R5)
yielding an N_CO of (1.1 +/- 0.2) x 10^18 cm^-2. Excitation analysis indicates
T_kin > 7 K. The Phillips system of C_2 transitions near 8775 Ang. was measured
using the Kitt Peak 4-m telescope and echelle spectrometer. Radiative pumping
models indicate a total C_2 column density of (7.0 +/- 0.4) x 10^14 cm^-2, two
excitation temperatures (39 and 126 K), and a total gas density of n ~ 250
cm^-3. The CO ice band at 4.7 micron was not detected, placing an upper limit
on the CO depletion of delta < 1 %. We postulate that the sightline has
multiple translucent components and is associated with the W40 molecular cloud.
Our data for W40 IRS 1a, coupled with other sightlines, shows that the ratio of
CO/C_2 increases from diffuse through translucent environs. Finally, we show
that the hydrogen to dust ratio seems to remain constant from diffuse to dense
environments, while the CO to dust ratio apparently does not.Comment: To appear in The Astrophysical Journal 17 pages total, 5 figures Also
available at http://casa.colorado.edu/~shuping/research/w40/w40.htm
Star Formation in the Extreme Outer Galaxy: Digel Cloud 2 Clusters
As a first step for studying star formation in the extreme outer Galaxy
(EOG), we obtained deep near-infrared images of two embedded clusters at the
northern and southern CO peaks of Cloud 2, which is one of the most distant
star forming regions in the outer Galaxy (galactic radius R_g ~ 19 kpc). With
high spatial resolution (FWHM ~ 0".35) and deep imaging (K ~ 21 mag) with the
IRCS imager at the Subaru telescope, we detected cluster members with a mass
detection limit of < 0.1 M_{sun}, which is well into the substellar regime.
These high quality data enables a comparison of EOG to those in the solar
neighborhood on the same basis for the first time. Before interpreting the
photometric result, we have first constructed the NIR color-color diagram
(dwarf star track, classical T Tauri star (CTTS) locus, reddening law) in the
Mauna Kea Observatory filter system and also for the low metallicity
environment since the metallicity in EOG is much lower than those in the solar
neighborhood. The estimated stellar density suggests that an ``isolated type''
star formation is ongoing in Cloud 2-N, while a ``cluster type'' star formation
is ongoing in Cloud 2-S. Despite the difference of the star formation mode,
other characteristics of the two clusters are found to be almost identical: (1)
K-band luminosity function (KLF) of the two clusters are quite similar, as is
the estimated IMF and ages (~ 0.5--1 Myr) from the KLF fitting, (2) the
estimated star formation efficiencies (SFEs) for both clusters are typical
compared to those of embedded clusters in the solar neighborhood (~ 10 %). The
similarity of two independent clusters with a large separation (~ 25 pc)
strongly suggest that their star formation activities were triggered by the
same mechanism, probably the supernova remnant (GSH 138-01-94).Comment: 14pages, 11 figures; Accepted for publication in Ap
Oscillator Strengths for B-X, C-X, and E-X Transitions in Carbon Monoxide
Band oscillator strengths for electronic transitions in CO were obtained at
the Synchrotron Radiation Center of the University of Wisconsin-Madison. Our
focus was on transitions that are observed in interstellar spectra with the Far
Ultraviolet Spectroscopic Explorer; these transitions are also important in
studies of selective isotope photodissociation where fractionation among
isotopomers can occur. Absorption from the ground state (X ^1Sigma^+ v'' = 0)
to A ^1Pi (v'= 5), B ^1Sigma^+ (v' = 0, 1), C ^1Sigma^+ (v' = 0, 1), and E ^1Pi
(v' = 0) was measured. Fits to the A - X (5, 0) band, whose oscillator strength
is well known, yielded the necessary column density and excitation temperature.
These parameters were used in a least-squares fit of the observed profiles for
the transitions of interest to extract their band oscillator strengths. Our
oscillator strengths are in excellent agreement with results from recent
experiments using a variety of techniques. This agreement provides the basis
for a self-consistent set of f-values at far ultraviolet wavelengths for
studies of interstellar (and stellar) CO.Comment: 22 pages, 3 figures, ApJS (in press
Does Infall End Before the Class I Stage?
We have observed HCO+ J=3-2 toward 16 Class I sources and 18 Class 0 sources,
many of which were selected from Mardones et al. (1997). Eight sources have
profiles significantly skewed to the blue relative to optically thin lines. We
suggest six sources as new infall candidates. We find an equal "blue excess"
among Class 0 and Class I sources after combining this sample with that of
Gregersen et al. (1997). We used a Monte Carlo code to simulate the temporal
evolution of line profiles of optically thick lines of HCO+, CS and H2CO in a
collapsing cloud and found that HCO+ had the strongest asymmetry at late times.
If a blue-peaked line profile implies infall, then the dividing line between
the two classes does not trace the end of the infall stage.Comment: 21 pages, 8 figures, accepted by ApJ for April 20, 2000, added
acknowledgmen
Risk management challenges of shared public services: a comparative analysis of Scotland and Finland
Spitzer Observations of NGC 1333: A Study of Structure and Evolution in a Nearby Embedded Cluster
We present a comprehensive analysis of structure in the young, embedded
cluster, NGC 1333 using members identified with Spitzer and 2MASS photometry
based on their IR-excess emission. In total, 137 members are identified in this
way, composed of 39 protostars and 98 more evolved pre-main sequence stars with
disks. Of the latter class, four are transition/debris disk candidates. The
fraction of exposed pre-main sequence stars with disks is 83% +/- 11%, showing
that there is a measurable diskless pre-main sequence population. The sources
in each of the Class I and Class II evolutionary states are shown to have very
different spatial distributions relative to the distribution of the dense gas
in their natal cloud. However, the distribution of nearest neighbor spacings
among these two groups of sources are found to be quite similar, with a strong
peak at spacings of 0.045 pc. Radial and azimuthal density profiles and surface
density maps computed from the identified YSOs show that NGC 1333 is elongated
and not strongly centrally concentrated, confirming previous claims in the
literature. We interpret these new results as signs of a low velocity
dispersion, extremely young cluster that is not in virial equilibrium.Comment: 59 pages, 20 figures, accepted to ApJ, verion with full resolution
figures available at
http://www.cfa.harvard.edu/~rgutermuth/preprints/gutermuth_ngc1333.pdf .
Updated to fix astro-ph figure garblin
Turbulence driven by outflow-blown cavities in the molecular cloud of NGC 1333
Outflows from young stellar objects have been identified as a possible source
of turbulence in molecular clouds. To investigate the relationship between
outflows, cloud dynamics and turbulence, we compare the kinematics of the
molecular gas associated with NGC 1333, traced in 13CO(1-0), with the
distribution of young stellar objects (YSOs) within. We find a velocity
dispersion of ~ 1-1.6 km/s in 13CO that does not significantly vary across the
cloud, and is uncorrelated with the number of nearby young stellar outflows
identified from optical and submillimeter observations. However, from velocity
channel maps we identify about 20 cavities or depressions in the 13CO intensity
of scales > 0.1-0.2 pc and velocity widths 1-3 km/s. The cavities exhibit limb
brightened rims in both individual velocity channel maps and position velocity
diagrams, suggesting that they are slowly expanding. We interpret these
cavities to be remnants of past YSO outflow activity: If these cavities are
presently empty, they would fill in on time scales of a million years. This can
exceed the lifetime of a YSO outflow phase, or the transit time of the central
star through the cavity, explaining the the absence of any clear correlation
between the cavities and YSO outflows. We find that the momentum and energy
deposition associated with the expansion of the cavities is sufficient to power
the turbulence in the cloud. In this way we conclude that the cavities are an
important intermediary step between the conversion of YSO outflow energy and
momentum into cloud turbulent motions.Comment: Accepted for publication in ApJ. Check out
http://astro.pas.rochester.edu/~aquillen/coolpics.html for channel map and
PosVel movies of N133
Can Protostellar Jets Drive Supersonic Turbulence in Molecular Clouds?
Jets and outflows from young stellar objects are proposed candidates to drive
supersonic turbulence in molecular clouds. Here, we present the results from
multi-dimensional jet simulations where we investigate in detail the energy and
momentum deposition from jets into their surrounding environment and quantify
the character of the excited turbulence with velocity probability density
functions. Our study include jet--clump interaction, transient jets, and
magnetised jets. We find that collimated supersonic jets do not excite
supersonic motions far from the vicinity of the jet. Supersonic fluctuations
are damped quickly and do not spread into the parent cloud. Instead subsonic,
non-compressional modes occupy most of the excited volume. This is a generic
feature which can not be fully circumvented by overdense jets or magnetic
fields. Nevertheless, jets are able to leave strong imprints in their cloud
structure and can disrupt dense clumps. Our results question the ability of
collimated jets to sustain supersonic turbulence in molecular clouds.Comment: 33 pages, 18 figures, accepted by ApJ, version with high resolution
figures at:
http://www.ita.uni-heidelberg.de/~banerjee/publications/jet_paper.pd
- …