511 research outputs found

    Phase Transition in Sexual Reproduction and Biological Evolution

    Full text link
    Using Monte Carlo model of biological evolution we have discovered that populations can switch between two different strategies of their genomes' evolution; Darwinian purifying selection and complementing the haplotypes. The first one is exploited in the large panmictic populations while the second one in the small highly inbred populations. The choice depends on the crossover frequency. There is a power law relation between the critical value of crossover frequency and the size of panmictic population. Under the constant inbreeding this critical value of crossover does not depend on the population size and has a character of phase transition. Close to this value sympatric speciation is observed.Comment: 13 pages, 8 figure

    Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein

    Get PDF
    p21 inhibits cyclin-dependent kinase (CDK) activity and proliferating cell nuclear antigen (PCNA)-dependent DNA replication by binding to CDK/cyclin complexes and to PCNA through distinct domains. The human papillomavirus (HPV)-16 E7 oncoprotein (16E7) abrogated a DNA damage-induced cell cycle arrest in vivo, despite high levels of p21. Using cell lysates and purified proteins we show that 16E7 prevented p21 both from inhibiting CDK2/cyclin E activity and PCNA-dependent DNA replication, whereas the nononcogenic HPV-6 E7 had reduced effects. Inactivation of both inhibitory functions of p21 was attained through binding between 16E7 and sequences in the carboxy-terminal end of p21 that overlap with the PCNA-binding site and the second p21 cyclin-binding motif. These data imply that the carboxyl terminus of p21 simultaneously modulates both CDK activity and PCNA-dependent DNA replication and that a single protein, 16E7, can override this modulation to disrupt normal cell cycle control

    Inhomogeneous Universe Models with Varying Cosmological Term

    Get PDF
    The evolution of a class of inhomogeneous spherically symmetric universe models possessing a varying cosmological term and a material fluid, with an adiabatic index either constant or not, is studied.Comment: 11 pages Latex. No figures. To be published in the GRG Journa

    An analysis of cosmological perturbations in hydrodynamical and field representations

    Get PDF
    Density fluctuations of fluids with negative pressure exhibit decreasing time behaviour in the long wavelength limit, but are strongly unstable in the small wavelength limit when a hydrodynamical approach is used. On the other hand, the corresponding gravitational waves are well behaved. We verify that the instabilities present in density fluctuations are due essentially to the hydrodynamical representation; if we turn to a field representation that lead to the same background behaviour, the instabilities are no more present. In the long wavelength limit, both approachs give the same results. We show also that this inequivalence between background and perturbative level is a feature of negative pressure fluid. When the fluid has positive pressure, the hydrodynamical representation leads to the same behaviour as the field representation both at the background and perturbative levels.Comment: Latex file, 18 page

    Phase transition in the genome evolution favours non-random distribution of genes on chromosomes

    Full text link
    We have used the Monte Carlo based computer models to show that selection pressure could affect the distribution of recombination hotspots along the chromosome. Close to critical crossover rate, where genomes may switch between the Darwinian purifying selection or complementation of haplotypes, the distribution of recombination events and the force of selection exerted on genes affect the structure of chromosomes. The order of expression of gene s and their location on chromosome may decide about the extinction or survival of competing populations.Comment: 13 pages, 7 figures, publicatio

    New Constraints from High Redshift Supernovae and Lensing Statistics upon Scalar Field Cosmologies

    Full text link
    We explore the implications of gravitationally lensed QSOs and high-redshift SNe Ia observations for spatially flat cosmological models in which a classically evolving scalar field currently dominates the energy density of the Universe. We consider two representative scalar field potentials that give rise to effective decaying Λ\Lambda (``quintessence'') models: pseudo-Nambu-Goldstone bosons (V(ϕ)=M4(1+cos(ϕ/f))V(\phi)=M^4(1+\cos (\phi /f)) ) and an inverse power-law potential (V(ϕ)=M4+αϕαV(\phi)=M^{4+\alpha}\phi ^{-\alpha}). We show that a large region of parameter space is consistent with current data if Ωm0>0.15\Omega_{m0} > 0.15. On the other hand, a higher lower bound for the matter density parameter suggested by large-scale galaxy flows, Ωm0>0.3\Omega_{m0} > 0.3, considerably reduces the allowed parameter space, forcing the scalar field behavior to approach that of a cosmological constant.Comment: 6 pages, 2 figures, submitted to PR
    corecore